Interplay of M. tuberculosis trehalose metabolism and its pathogenesis and drug resistance
结核分枝杆菌海藻糖代谢及其发病机制和耐药性的相互作用
基本信息
- 批准号:10585346
- 负责人:
- 金额:$ 66.19万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-16 至 2027-02-28
- 项目状态:未结题
- 来源:
- 关键词:AftercareAnabolismAntibioticsAntitubercular AntibioticsBacillusBacterial InfectionsC3HeB/FeJ MouseCRISPR interferenceCarbonCell WallClinicalCord FactorsCross-Sectional StudiesDevelopmentDisaccharidesDiseaseDrug TargetingDrug ToleranceDrug resistanceDrug resistance in tuberculosisDyesExhibitsFlow CytometryGenomicsGlycolipidsGoalsHealthHeterogeneityHumanImmune systemIn VitroInfectionIntrinsic factorLabelLinkMediatingMessenger RNAMetabolicMetabolismMicrobial BiofilmsMultidrug-Resistant TuberculosisMutationMycobacterium tuberculosisOutcomePathogenesisPatientsPatternPeriodicityPersonsPhenotypePlayPopulationProcessPublic HealthQuantitative Reverse Transcriptase PCRRegimenReportingResearchRoleSourceTestingTherapeuticTherapeutic InterventionTreatment ProtocolsTrehaloseTuberculosisVariantVirulenceVirulence FactorsWorkagedantibiotic tolerancebactericidebasecostdrug developmentdrug resistance developmentdrug-sensitiveepidemiology studyhigh riskin vivoinhibitorinsightmetabolomicsmortalitymouse modelmutantnovel therapeutic interventionnovel therapeuticsoverexpressionpathogenresistance mutationsynergismtuberculosis drugstuberculosis treatmentvalidamycins
项目摘要
Research Summary
Antibiotics have failed to control bacterial diseases typically due to the emergence of drug resistant (DR) mutants.
Mycobacterium tuberculosis (Mtb) is one of the world’s most successful pathogens because of its capacity to
develop DR mutants to withstand antibiotic effects. Treating DR-tuberculosis (TB) patients takes two years and
costs nearly $393,000 per person, which is substantially more expensive than ~ $49,000 per person for treating
a drug sensitive (DS)-TB patient. Despite this pressing human health problem, little is known about the
mechanistic bases underlying the development of DR-TB. Given the low genomic mutation rates and slow
replication of Mtb, intrinsic bacterial factors should play an important role in developing DR-TB, but they have
been understudied. Accumulating evidence has shown that cyclic formation of Mtb persisters, a phenotypic
variant transiently tolerant to TB antibiotics, can predispose TB patients to the emergence of permanent DR
mutants. We recently reported untargeted metabolomics profiling of Mtb persisters and revealed that Mtb shifted
its trehalose-mediated carbon flux towards the biosynthesis of central carbon metabolism (CCM) intermediates
to avoid irreversible antibiotic damage, while decreasing its flux towards the biosynthesis of cell wall mycolyl
glycolipids. This process was termed the “trehalose catalytic shift” and was identified to be essential for Mtb
persister formation, viability, and drug tolerance. In this application, we hypothesize that the trehalose catalytic
shift is an adaptive strategy executed by Mtb after treatment with TB antibiotics to achieve drug tolerance and
also to facilitate the development of DR mutants, thus altering the TB disease course. In cross-sectional studies
with 7 different clinical TB lineages, lineage 2 strains such as HN878 W-Beijing strain (HN878), have been
associated with a high risk of developing multidrug resistant (MDR)-TB and high mortality. Thus, we will examine
our hypothesis by demonstrating that HN878 is hypervirulent and more prone to develop drug resistance than
other lineage strains because of its high level of trehalose catalytic shift activity. To this end, we will determine if
the trehalose catalytic shift is an HN878 intrinsic factor responsible for its drug tolerance, DR mutation rates, and
hypervirulence in vitro, ex vivo and then apply it in vivo using a TB murine model. A successful outcome of this
application will aid in the development of new therapeutic interventions to cure DR-TB patients, including those
infected with HN878.
研究总结
抗生素未能控制细菌性疾病通常是由于耐药(DR)突变体的出现。
结核分枝杆菌 (Mtb) 是世界上最成功的病原体之一,因为它能够
开发 DR 突变体以抵抗抗生素的作用,治疗 DR 结核病 (TB) 患者需要两年的时间。
每人花费近 393,000 美元,这比每人约 49,000 美元的治疗费用要贵得多
药物敏感(DS)结核病患者 尽管存在这一紧迫的人类健康问题,但人们对这种疾病知之甚少。
耐药结核病发展的机制基础是基因组突变率低且缓慢。
Mtb 的复制、内在细菌因素在 DR-TB 的发展中应发挥重要作用,但它们
越来越多的证据表明,结核分枝杆菌持续存在的循环形成是一种表型。
对结核病抗生素短暂耐受的变体可能使结核病患者容易出现永久性 DR
我们最近报告了 Mtb 持续者的非靶向代谢组学分析,并揭示了 Mtb 发生了变化。
海藻糖介导的碳通量用于中心碳代谢(CCM)中间体的生物合成
避免不可逆的抗生素损伤,同时减少其细胞壁分枝菌基生物合成的通量
这个过程被称为“海藻糖催化转变”,并被认为对于 Mtb 至关重要。
在此应用中,我们采用了海藻糖的催化作用。
转移是结核分枝杆菌在使用结核抗生素治疗后执行的一种适应性策略,以实现耐药性和
在横断面研究中,还可以促进 DR 突变体的发展,从而改变结核病的病程。
与7种不同的临床结核病谱系相比,谱系2株如HN878 W-北京株(HN878)已被
与发展耐多药(MDR)结核病和高死亡率的高风险相关。因此,我们将进行检查。
我们的假设是通过证明 HN878 具有高毒力并且比 HN878 更容易产生耐药性
其他谱系菌株由于其高水平的海藻糖催化转变活性,为此,我们将确定是否。
海藻糖催化转变是 HN878 的内在因素,决定其耐药性、DR 突变率和
体外、离体高毒力,然后使用结核病小鼠模型将其应用于体内,这是一个成功的结果。
应用将有助于开发新的治疗干预措施来治愈耐药结核病患者,包括那些
感染HN878。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Hyungjin Eoh其他文献
Hyungjin Eoh的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Hyungjin Eoh', 18)}}的其他基金
PknG mediated tailoring Mycobacterium tuberculosis adaptive metabolism is required for the persister formation
PknG 介导的剪裁结核分枝杆菌适应性代谢是持续细胞形成所必需的
- 批准号:
10002657 - 财政年份:2019
- 资助金额:
$ 66.19万 - 项目类别:
相似国自然基金
链病毒定(Streptovirudin)结构单元—二氢尿嘧啶生物合成机制的研究
- 批准号:31900051
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
萘醌-氧吲哚类生物碱Coprisidins的生物合成机制研究
- 批准号:31900043
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
村山醌生物合成及其骨架重排机制的研究
- 批准号:31870026
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
深海链霉菌 Streptomyces atratus SCSIO ZH16中新颖环肽化合物atramycin的代谢激活及其生物合成机制
- 批准号:31870046
- 批准年份:2018
- 资助金额:59.0 万元
- 项目类别:面上项目
蒽醌骈合型烯二炔天然产物的生物合成途径研究
- 批准号:81872779
- 批准年份:2018
- 资助金额:57.0 万元
- 项目类别:面上项目
相似海外基金
Investigating metabolism and DNA damage repair in uropathogenic Escherichia coli fluoroquinolone persisters
研究泌尿道致病性大肠杆菌氟喹诺酮类持续存在的代谢和 DNA 损伤修复
- 批准号:
10747651 - 财政年份:2023
- 资助金额:
$ 66.19万 - 项目类别:
Investigating bacterial contributions to TB treatment response: a focus on in-host pathogen dynamics
研究细菌对结核病治疗反应的贡献:关注宿主内病原体动态
- 批准号:
10772431 - 财政年份:2020
- 资助金额:
$ 66.19万 - 项目类别:
Investigating bacterial contributions to TB treatment response: a focus on in-host pathogen dynamics
研究细菌对结核病治疗反应的贡献:关注宿主内病原体动态
- 批准号:
10701691 - 财政年份:2020
- 资助金额:
$ 66.19万 - 项目类别:
Investigating bacterial contributions to TB treatment response: a focus on in-host pathogen dynamics
研究细菌对结核病治疗反应的贡献:关注宿主内病原体动态
- 批准号:
10751670 - 财政年份:2020
- 资助金额:
$ 66.19万 - 项目类别:
Investigating bacterial contributions to TB treatment response: a focus on in-host pathogen dynamics
研究细菌对结核病治疗反应的贡献:关注宿主内病原体动态
- 批准号:
10468975 - 财政年份:2020
- 资助金额:
$ 66.19万 - 项目类别: