Identifying factors associated with ovarian cancer recurrence using a population-based approach
使用基于人群的方法识别与卵巢癌复发相关的因素
基本信息
- 批准号:10581186
- 负责人:
- 金额:$ 13.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-02-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAlgorithmsAreaAsianAwardBiologicalBiological MarkersBiometryBlack raceCancer EtiologyCancer PatientCancer PrognosisCancer SurvivorCarcinomaCategoriesCharacteristicsClassificationClinicalClinical DataClinical TrialsCommunicationComputational BiologyDataData SourcesDevelopmentDiagnosisDiseaseDisease ManagementDistressEpithelial ovarian cancerEventFosteringFoundationsFrightFutureGene ExpressionGene Expression ProfileGene Expression ProfilingGleanGoalsGuidelinesHispanicHospitalizationIndividualInterventionKnowledgeLeadershipLinkMalignant NeoplasmsMalignant neoplasm of ovaryMedical RecordsMentorshipMolecularMorbidity - disease rateOperative Surgical ProceduresOvarianPathology ReportPatient CarePatientsPatternPerformancePopulationPopulation DatabaseProbabilityPrognosisPrognostic MarkerPublishingRecurrenceRecurrent Malignant NeoplasmResearchResearch PersonnelResearch Project GrantsResourcesRiskRisk AssessmentRisk FactorsSerousSourceSystemic TherapyTherapeuticTissue SampleTrainingTreatment ProtocolsUnited StatesUpdateUtahValidationWomanWorkWorld Health Organizationbiobankbiomarker developmentbiomarker drivenbrca genecancer diagnosiscancer epidemiologycancer recurrencecareer developmentclinical careclinical decision-makingclinical remissionclinical riskclinically relevantcohortdata analysis pipelinedata streamsepithelial to mesenchymal transitionexperiencefollow-upgenetic epidemiologyhigh riskimprovedmortalitymultiple data sourcespatient biomarkerspatient prognosispersonalized approachpopulation basedprognostictranscriptomicstreatment responsetumor
项目摘要
Ovarian cancer is the fifth leading cause of cancer related mortality in the United States. Despite advances in
surgical approaches and treatment regimens, overall survival has improved only marginally over the past thirty
years. Although nearly 80% of ovarian cancer patients will achieve complete clinical remission through surgery
and systemic therapy at their initial diagnosis, more than 50% will experience a recurrence by five years after
diagnosis. However, little is known about factors contributing to risk of ovarian cancer recurrence. Ovarian
cancer is a heterogeneous disease with distinct histotypes that inform prognosis. High grade serous carcinoma
is the most common histotype, comprising ~70% of all ovarian cancer diagnoses. Recently, three robust gene
expression signatures have been developed that have the potential to inform patient prognosis and biomarker-
driven therapeutic approaches. These tumor gene expression signatures include: a) the Milstein prognostic
score that distinguishes individuals with high and low probability of survival; b) the PrOTYPE classifier, which
categorizes four biologic subtypes; and c) the Oxford classifier, which identifies a poor prognosis epithelial-to-
mesenchymal transition score. Each signature correlates to differential with survival, suggesting that the
signatures may have clinical utility in informing patient prognosis; however, the scores have yet to be evaluated
in a population-based setting. Thus, the overarching goal of this proposal is to understand patient
demographic, clinicopathologic, and molecular features associated with patterns of ovarian cancer recurrence
and mortality. To do this, I will leverage the robust resources through the Utah Population Database to achieve
the following study aims: (1) Characterize patterns of ovarian recurrence and mortality by patient and
clinicopathologic characteristics; and (2) Compare the performance of three prognostic tumor gene expression
signatures with (a) mortality and (b) recurrence among high-grade serous ovarian cancer patients. The primary
training experience will focus on three areas: first, to develop expertise in the development and validation of an
algorithm to identify recurrence using multiple data streams; second, to develop expertise in transcriptomics
and data analysis pipelines for gene expression profiling; and third, to foster professional and career
development through leadership, scientific communication, and then transitioning to independence. The
research and training will be supported by an interdisciplinary mentorship team led by Dr. Jennifer Doherty,
and comprised of experts in ovarian cancer and genetic epidemiology, computational biology, and biostatistics.
The results from these aims will expand our understanding of factors contributing to risk and timing of ovarian
cancer recurrence and provide evidence on how gene expression signatures of high-grade serous ovarian
cancer can be incorporated into clinical risk assessment. Cumulatively, information gleaned from this work
could lead to a personalized approach to ovarian cancer disease management through inclusion of prognostic
markers in clinical care and the development of biomarker-driven therapies.
卵巢癌是美国癌症相关死亡率的第五个主要原因。尽管进步
手术方法和治疗方案,整体生存率仅在过去三十次略有改善
年。尽管近80%的卵巢癌患者将通过手术实现完全的临床缓解
和全身疗法在初次诊断时,超过50%的人会在五年后复发
诊断。但是,关于导致卵巢癌复发风险的因素知之甚少。卵巢
癌症是一种异质性疾病,具有明显的组织型,可为预后提供依据。高级浆液性癌
是最常见的组织型,占所有卵巢癌诊断的约70%。最近,三个健壮的基因
已经开发了表达特征,有可能告知患者预后和生物标志物
驱动的治疗方法。这些肿瘤基因表达特征包括:a)米尔斯坦预后
得分可以区分生存率高和低概率的个体; b)原型分类器,该分类器
对四种生物学亚型分类; c)牛津分类器,它标识了预后不良的上皮到 -
间充质转变评分。每个签名与生存的差异相关,表明
签名可能具有临床效用,以告知患者预后;但是,分数尚未评估
在基于人群的环境中。因此,该提议的总体目标是了解患者
人口统计学,临床病理学和分子特征与卵巢癌复发有关
和死亡率。为此,我将通过犹他州人口数据库利用强大的资源来实现
以下研究的目的:(1)表征患者的卵巢复发和死亡模式,
临床病理特征; (2)比较三个预后肿瘤基因表达的性能
(a)死亡率和(b)高级浆液卵巢癌患者的签名。主要
培训经验将重点关注三个领域:首先,在开发和验证方面发展专业知识
算法使用多个数据流识别复发;第二,发展转录组学专业知识
以及基因表达分析的数据分析管道;第三,要培养专业人士和职业
通过领导力,科学沟通,然后过渡到独立性。这
研究和培训将得到由詹妮弗·多赫蒂(Jennifer Doherty)博士领导的跨学科指导团队的支持
由卵巢癌和遗传流行病学,计算生物学和生物统计学专家组成。
这些目标的结果将扩大我们对造成卵巢风险和时机的因素的理解
癌症复发,并提供有关高级浆液卵巢基因表达特征的证据
癌症可以纳入临床风险评估中。累积地,从这项工作中收集的信息
通过纳入预后,可能导致卵巢癌疾病管理的个性化方法
临床护理和生物标志物驱动疗法的发展。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lindsay Jane Collin其他文献
Lindsay Jane Collin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lindsay Jane Collin', 18)}}的其他基金
Biologic and Patient Variation Affecting Breast Cancer Treatment Efficacy
影响乳腺癌治疗效果的生物学和患者变异
- 批准号:
9760646 - 财政年份:2019
- 资助金额:
$ 13.96万 - 项目类别:
相似国自然基金
无界区域中非局部Klein-Gordon-Schrödinger方程的保结构算法研究
- 批准号:12301508
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
感兴趣区域驱动的主动式采样CT成像算法研究
- 批准号:62301532
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
面向多区域单元化生产线协同调度问题的自动算法设计研究
- 批准号:62303204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于深度强化学习的约束多目标群智算法及多区域热电调度应用
- 批准号:62303197
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向二氧化碳封存的高可扩展时空并行区域分解算法及其大规模应用
- 批准号:12371366
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 13.96万 - 项目类别:
Previvors Recharge: A Resilience Program for Cancer Previvors
癌症预防者恢复活力计划:癌症预防者恢复力计划
- 批准号:
10698965 - 财政年份:2023
- 资助金额:
$ 13.96万 - 项目类别:
Dynamic neural coding of spectro-temporal sound features during free movement
自由运动时谱时声音特征的动态神经编码
- 批准号:
10656110 - 财政年份:2023
- 资助金额:
$ 13.96万 - 项目类别:
HEAR-HEARTFELT (Identifying the risk of Hospitalizations or Emergency depARtment visits for patients with HEART Failure in managed long-term care through vErbaL communicaTion)
倾听心声(通过口头交流确定长期管理护理中的心力衰竭患者住院或急诊就诊的风险)
- 批准号:
10723292 - 财政年份:2023
- 资助金额:
$ 13.96万 - 项目类别: