Molecular Regulators of Synaptic Specificity
突触特异性的分子调节剂
基本信息
- 批准号:10581824
- 负责人:
- 金额:$ 0.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-03-02 至 2023-08-29
- 项目状态:已结题
- 来源:
- 关键词:AdoptedAffectAfferent NeuronsAnimal ModelArchitectureAxonBehaviorBehavioralBehavioral AssayBiological AssayBrainCaenorhabditis elegansCellsCloningComplexComputer softwareDatabasesDefectDendritesDevelopmentElectronic Medical Records and Genomics NetworkEnvironmentExcisionGene ExpressionGenesGeneticGenetic ScreeningGenomeGoalsIndividualInstinctLabelLife Cycle StagesLinkLocomotionMaintenanceMammalsMapsMethodsModelingMolecularMolecular AnalysisMolecular CloningMorphogenesisMovementMutagenesisMutationNervous system structureNeurodevelopmental DisorderNeuronsNociceptionNociceptorsOrangesOutputPathway interactionsPatternPhenotypeProcessProteinsRNA InterferenceReproducibilityResearchRoleSiteSpecificitySynapsesTestingTo specifyVideo RecordingWorkautism spectrum disorderbehavior testdesignexpectationgenetic analysisgraspin vivolive cell imagingmeetingsmutantmutation screeningnervous system disordernew therapeutic targetnoveloptogeneticspostsynapticprogramsreconstitutionresponsestemsynaptogenesistooltranscription factortranscriptome sequencing
项目摘要
Project Summary
Specific circuits in the brain determine how we sense and respond to our environment. These highly connected
networks emerge during development as neurons extend projections to defined meeting sites, identify partners,
and begin synaptogenesis. Although initial connections may be modified later, the overall pattern of connectivity
is predictable thus suggesting that partner selection can be encoded by the genome. It follows that genetic
analysis can be powerfully employed to find synaptic specificity genes by identifying mutants with altered patterns
of connectivity. With the goal of identifying novel, conserved target selection proteins, I will screen for mutations
that disrupt distinctive behaviors that depend on neuron-specific synapses in C. elegans. This work focuses on
the PVD sensory neuron and its synaptic targets, PVC and AVA. PVD stimulation activates PVC, its dominant
partner, and triggers forward movement. If the PVC connection is removed, however, AVA is activated instead,
resulting in reverse locomotion. Thus, mutants that selectively disrupt either PVD→PVC or PVD→AVA
connections can be identified from readily distinguished behaviors (e.g., forward vs reverse movement). With its
short life cycle and powerful genetic tools, C. elegans is especially useful for unbiased genetic screens. In Aim
1 I will use an optogenetic strategy to activate PVD in a forward genetic EMS mutagenesis screen that uses a
high-throughput video recording system (WormLab) to identify mutants with selectively altered locomotion.
Behavioral mutants with these specific locomotory phenotypes will be screened with GRASP (GFP
Reconstitution Across Synaptic Partners) markers to confirm that either PVD→PVC or PVD→AVA synapses are
disrupted during synaptogenesis. Molecular cloning methods will be used to identify the affected synaptic
specificity genes. Aim 2 adopts an independent approach that stems from the expectation that synaptic
specificity genes in PVD should be regulated by cell autonomous transcription factors (TFs). My strategy exploits
a list of 35 PVD-enriched TFs previously derived from RNA-Seq profiling. I will use RNAi and available genetic
mutants in the GRASP marker assay to test each of these TFs for potential roles in either PVD→PVC or
PVD→AVA synaptogenesis. This TF screen has the advantage of dysregulating multiple target genes
simultaneously for a robust synaptic specificity phenotype. I will use PVD-specific RNA-Seq to identify the targets
of the synapse-specific TFs and then test them individually for roles in PVD synaptic specificity using the
behavioral assay and GRASP markers. Together, these approaches in C. elegans are expected to reveal key
determinants of synaptic specificity that can be tested for conserved roles in more complex nervous systems
and for links to neurological disorders associated with altered synaptogenesis such as Autism Spectrum Disorder
(ASD).
项目摘要
大脑中的特定电路决定了我们对这些高度联系的感觉
随着神经元将预测扩展到定义的会议网站,确定合作伙伴,
并开始突触发生。
因此可以预测,因此表明伴侣的选择可以由基因组编码。
可以通过鉴定具有替代品的突变体来强大地使用分析来找到突触特异性基因
连通性。
这种依赖于秀丽隐杆线的神经元特异性突触的独特行为。
PVD感觉神经元及其突触靶标PVC和AVA。
合作伙伴,并触发前向运动。
导致反向运动。
可以从准备好的行为(例如,向后运动)中识别连接。
秀丽隐杆线虫在短暂的遗传筛查中特别有用
1我将使用光遗传学策略在使用的前向遗传EMS Mutajenesis屏幕中激活PVD
高通量视频记录系统(Wormlab)以识别具有选择运动的突变体。
具有特定运动表型的行为突变体将用掌握(GFP)筛选
跨突触伙伴的重新建立)标记以确认PVD→PVC或PVD→AVA突触是
突触发生过程中ers段。
特异性基因2采用了一种独立的方法
PVD中的特异性基因应由细胞自主转录因子(TFS)定制
从RNA-Seq分析得出的35个富含PVD的TFS的列表。
GRASP标记测定中的突变体测试每个TF在PVD→PVC或OR中的潜在作用
PVD→AVA突触发生。
同时使用鲁棒的突触特异性表型。
使用突触特异性TFS和测试它们在PVD突触特异性中的角色单独测试
行为分析和抓握标记,预计秀丽隐杆线中的这些方法会揭示关键
在更复杂的神经系统中,测试的突触特异性的决定因素
以及与随着自闭症谱系障碍等突触发生变化相关的神经系统疾病的联系
(ASD)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tyler J. Kennedy其他文献
Tyler J. Kennedy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tyler J. Kennedy', 18)}}的其他基金
FMRP and Pumilio co-regulate synaptogenesis by controlling Neuroglian expression
FMRP 和 Pumilio 通过控制 Neuroglian 表达共同调节突触发生
- 批准号:
9068676 - 财政年份:2015
- 资助金额:
$ 0.25万 - 项目类别:
相似国自然基金
TiC-TiB2颗粒喷射成形原位合成及其对M2高速工具钢共晶碳化物形成与演化的影响
- 批准号:52361020
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
植被群落演替对河道水流结构和纵向离散特性影响机制研究
- 批准号:52309088
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
热带印度洋海表皮温日变化的数值模拟及对海气热通量的影响
- 批准号:42376002
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
协同遥感和气候模型的城市高温热浪时空特征及其对热暴露影响研究
- 批准号:42371397
- 批准年份:2023
- 资助金额:46 万元
- 项目类别:面上项目
相似海外基金
The interactions between myenteric macrophages and enteric neurons shape development and spread of enteric synucleinopathy
肌间巨噬细胞和肠神经元之间的相互作用影响肠突触核蛋白病的发展和扩散
- 批准号:
10723844 - 财政年份:2023
- 资助金额:
$ 0.25万 - 项目类别:
Single cell transcriptomics of nerves that lack Remak bundles
缺乏 Remak 束的神经的单细胞转录组学
- 批准号:
10649087 - 财政年份:2023
- 资助金额:
$ 0.25万 - 项目类别:
How temporal transcription factors regulate guidance cues and dendrite morphogenesis in Drosophila somatosensory circuits
时间转录因子如何调节果蝇体感回路中的引导线索和树突形态发生
- 批准号:
10390077 - 财政年份:2022
- 资助金额:
$ 0.25万 - 项目类别:
How temporal transcription factors regulate guidance cues and dendrite morphogenesis in Drosophila somatosensory circuits
时间转录因子如何调节果蝇体感回路中的引导线索和树突形态发生
- 批准号:
10609392 - 财政年份:2022
- 资助金额:
$ 0.25万 - 项目类别: