Development of a "Cell Splicing" Technology Platform
开发“细胞拼接”技术平台
基本信息
- 批准号:10578742
- 负责人:
- 金额:$ 20.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-10 至 2025-02-28
- 项目状态:未结题
- 来源:
- 关键词:AdherenceAdhesionsAffectAutoimmunityBehaviorBiological AssayBlood PlateletsBullaCancer ModelCell LineCell NucleusCell SurvivalCell TherapyCell fusionCell physiologyCellsCellular StructuresCentrifugationChemicalsCoculture TechniquesCommunicable DiseasesCommunitiesCytochalasin BCytolysisCytoplasmDevelopmentDrug usageEngineeringErythrocytesEvolutionFoundationsFractionationFreezingGenetic DiseasesGenetic RecombinationGoalsGranzymeHeritabilityHumanHybridsImmuneIndividualKineticsKnock-outLipid BilayersLysosomesMacrophageMediatingMembraneMembrane FusionMethodsMitochondriaMonitorMorphologyMusNatureNuclearOrganellesParentsPhagocytosisPharmaceutical PreparationsPlayProcessProliferatingProtocols documentationRNA SplicingResearch Project GrantsResearch ProposalsStructureSubcellular FractionsSystemT-LymphocyteTechniquesTemperatureTestingTherapeuticTherapeutic InterventionTimeVariantVesicleWild Type MouseWorkcancer therapycell behaviorcell typecytokinedensityimprovedin vitro Assayin vitro testingin vivoin vivo Modelinterestmigrationnovel therapeuticsnuclear transferperforinpreservationreconstitutionresponsesynthetic biologytechnology platformtissue injurytissue repairtooltumor
项目摘要
Project Summary:
The general scientific community already separates different layers or subcellular fractions (i.e., membrane vs.
cytoplasm vs. nucleus) as well as subcomponent organelles/machinery (such as mitochondria, lysosomes, etc.)
in order to study and better understand cell function. This Trailblazer research proposal seeks to discover how
we might repurpose such components, with major emphasis presently on nuclear transfer or exchange as part
of a new synthetic biology approach in creating cell-based therapies. Such efforts will lead to the development
of a massively expanded toolbox of interventional therapies with a wide array of potential downstream
applications in biomedicine (i.e., treatments for cancer, genetic and infectious disease, autoimmunity, and tissue
injury and repair). This will be achieved through the following:
1) Generate methods to efficiently isolate nuclei from macrophage and T cells for fusion into
enucleated red blood cells and platelets. Methods for nuclear isolation will first be optimized using drug and
density centrifugation-induced cellular blebbing and fractionation to isolate nuclei- vs. cytoplasmic component-
containing vesicles, called karyoplasts and cytoplasts, respectfully. Karyoplasts will be derived from innate
immune macrophage and adaptive immune T cells, and then fused (with PEG) into naturally enucleated RBCs
and platelets, and derived cell constructs will be monitored for viability and function over time.
2) Develop storage, freezing, and thawing requirements to maintain viability of cell-derived
cytoplasts and karyoplasts, and fusion constructs. This will be done by exploring different freezing media
types, constituent chemical concentrations, or altered protocol temperature kinetics to both store (short vs. long-
term) as well as thaw cells or their components with preserved structure and function (Figure 1, middle).
3) Characterize macrophage- & T cell-derived cytoplasts, as well as new variant cells following
nuclear exchange between enucleated macrophage and T cell bodies. Prior enucleation studies show
modified cell behavior, therefore it is not only of interest to investigate nuclear exchange but also what happens
to enucleated cells. In addition, nuclear exchange will be attempted with both fresh as well as frozen karyoplast
and cytoplast components, with all fusion constructs tested for morphology/viability, proliferation, cytokine
expression, and behaviors either derived or distinct from donor cells. This approach will also allow us to
determine how constructs may be tunable as part of a larger plug and play system.
4) Test new constructs in functional assays in vitro and in a therapeutic cancer model in vivo. This
strategy will provide a platform to create new cell behaviors related to functional activities like macrophage-
related adherence and phagocytosis, as well as T cell-mediated perforin/granzyme cytolysis. Therefore,
constructs will be tested in vitro in adhesion, migration, and co-culture (cytolysis) assays as well as for anti-tumor
activity in vivo in mice.
项目概要:
一般科学界已经区分了不同的层或亚细胞部分(即膜与细胞)。
细胞质与细胞核)以及子成分细胞器/机械(例如线粒体、溶酶体等)
为了研究和更好地了解细胞功能。这项开拓者研究计划旨在发现如何
我们可能会重新调整这些组成部分的用途,目前主要强调核转让或交换作为其一部分
创造基于细胞的疗法的新合成生物学方法。这样的努力将带来发展
大规模扩展的介入治疗工具箱,具有广泛的潜在下游
生物医学中的应用(即癌症、遗传和传染病、自身免疫和组织疾病的治疗)
损伤和修复)。这将通过以下方式实现:
1) 生成有效地从巨噬细胞和 T 细胞中分离细胞核以融合到
去核红细胞和血小板。首先将使用药物和药物来优化核分离方法
密度离心诱导细胞起泡和分级分离以分离细胞核与细胞质成分
含有囊泡,分别称为核质体和细胞质。核质体将源自先天
免疫巨噬细胞和适应性免疫 T 细胞,然后融合(与 PEG)到自然去核的红细胞中
随着时间的推移,将监测血小板和衍生细胞构建体的活力和功能。
2) 制定储存、冷冻和解冻要求,以维持细胞来源的活力
细胞质和核质体以及融合构建体。这将通过探索不同的冷冻介质来完成
类型、成分化学浓度或改变协议温度动力学以存储(短与长)
术语)以及解冻细胞或其成分并保留结构和功能(图 1,中)。
3) 表征巨噬细胞和 T 细胞来源的细胞质,以及以下新的变异细胞
去核巨噬细胞和 T 细胞体之间的核交换。先前的剜除研究表明
改变了细胞行为,因此不仅对研究核交换感兴趣,而且对发生的情况也感兴趣
去核细胞。此外,将尝试用新鲜和冷冻核质体进行核交换
和细胞质成分,所有融合构建体都经过形态/活力、增殖、细胞因子测试
源自供体细胞或不同于供体细胞的表达和行为。这种方法还将使我们能够
确定如何将结构作为更大的即插即用系统的一部分进行调整。
4) 在体外功能测定和体内癌症治疗模型中测试新的构建体。这
该策略将提供一个平台来创建与巨噬细胞等功能活动相关的新细胞行为
相关的粘附和吞噬作用,以及 T 细胞介导的穿孔素/颗粒酶细胞溶解作用。所以,
构建体将在体外进行粘附、迁移、共培养(细胞溶解)测定以及抗肿瘤试验
小鼠体内活性。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joshua Charles Doloff其他文献
Joshua Charles Doloff的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joshua Charles Doloff', 18)}}的其他基金
Tolerance-Inducing mRNA Nanoparticles to Treat Type 1 Diabetes
诱导耐受的 mRNA 纳米颗粒治疗 1 型糖尿病
- 批准号:
10835326 - 财政年份:2023
- 资助金额:
$ 20.47万 - 项目类别:
Development of a "Cell Splicing" Technology Platform
开发“细胞拼接”技术平台
- 批准号:
10426268 - 财政年份:2021
- 资助金额:
$ 20.47万 - 项目类别:
Development of a "Cell Splicing" Technology Platform
开发“细胞拼接”技术平台
- 批准号:
10218482 - 财政年份:2021
- 资助金额:
$ 20.47万 - 项目类别:
相似国自然基金
动脉粥样硬化发生中CAPN2影响内皮粘连的机制研究
- 批准号:82000254
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
层粘连蛋白受体第272位苏氨酸影响猪瘟病毒感染的分子机制
- 批准号:31902264
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
层粘连蛋白调控巨噬细胞和脂肪基质细胞影响肥胖脂肪组织重塑的机制
- 批准号:
- 批准年份:2019
- 资助金额:300 万元
- 项目类别:
大黄-桃仁介导AhR通路影响Th17/Treg和肠道菌群平衡改善肠粘膜屏障功能防治粘连性肠梗阻的机制研究
- 批准号:81804098
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
保留双层肌膜的功能性肌肉移植中S1P/S1PR1轴调节巨噬细胞迁移及分化对移植肌肉粘连与功能的影响
- 批准号:81871787
- 批准年份:2018
- 资助金额:55.0 万元
- 项目类别:面上项目
相似海外基金
Full Project 1: Defining Mechanisms of MICAL-dependent Pancreatic Cancer Cell Migration
完整项目 1:MICAL 依赖性胰腺癌细胞迁移的定义机制
- 批准号:
10762273 - 财政年份:2023
- 资助金额:
$ 20.47万 - 项目类别:
Project 1: Defining Mechanisms of MICAL-dependent Pancreatic Cancer Cell Migration
项目 1:定义 MICAL 依赖性胰腺癌细胞迁移机制
- 批准号:
10762144 - 财政年份:2023
- 资助金额:
$ 20.47万 - 项目类别:
Retina-derived extracellular vesicles in diabetic retinopathy: their potential role in pathogenesis and therapy
糖尿病视网膜病变中视网膜来源的细胞外囊泡:它们在发病机制和治疗中的潜在作用
- 批准号:
10644819 - 财政年份:2023
- 资助金额:
$ 20.47万 - 项目类别:
Sustained delivery technology for Cyclosporine A in the treatment of autoimmune response
环孢素 A 持续递送技术治疗自身免疫反应
- 批准号:
10256580 - 财政年份:2021
- 资助金额:
$ 20.47万 - 项目类别: