Theoretical and Physiological Basis of Priority Maps in the Frontal Eye Field
额叶眼场优先级图的理论和生理基础
基本信息
- 批准号:10578673
- 负责人:
- 金额:$ 4.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-06-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAlgorithmsAssociation LearningBasal GangliaBehaviorBehavioralBrainCharacteristicsCognitiveComplexComputer SimulationCuesDataDiseaseEyeEye MovementsGoalsKnowledgeLearningMapsMeasurementMeasuresModelingMonkeysMotorMovementNeuronsOutcomePhysiologicalProbabilityPropertyRecording of previous eventsRewardsSaccadesSchizophreniaSensoryServicesShapesSignal TransductionSourceStimulusTestingTimeVisionVisualVisual FieldsVisual SystemWorkautism spectrum disorderdesignexpectationexperienceexperimental studyflexibilityfovea centralisfrontal eye fieldsimprovedin silicoin vivointerestneurophysiologynoveloculomotor behaviorpredictive modelingreceptive fieldresponsesimulationskillssuperior colliculus Corpora quadrigeminatheoriestraining opportunityvisual motorvisual searchvisual stimulus
项目摘要
Project Summary
Each movement of the eyes is the outcome of a competition between the stimulus at the fovea, the target of the
movement, and other potential targets. The frontal eye field (FEF) is thought to maintain a map of priority for
saccadic eye movements, combining information about the salience of stimuli with their behavioral relevance to
guide the flow of eye movements. The objective of this work is to understand how priority maps form in FEF. The
overall hypothesis is that FEF neurons form these maps by learning to anticipate saccades and as a result,
integrate a wide range of sensory, motor, and cognitive signals into a singular representation that reflects
expectations about the timing and probability of saccades. Recently, we developed a novel simulation of
associative learning during natural oculomotor behavior that permits measurement of the visuomotor properties
of neurons that arise from a given learning goal. The first aim is to use this simulation to determine if FEF neurons
in silico develop visuomotor properties like FEF neurons in vivo when they learn to anticipate saccades. We will
simulate several FEF networks, each designed to learn distinct goals related to oculomotor behavior and
characterize the properties that develop in each. Our preliminary data suggests that when neurons anticipate
movement goals, their visuomotor properties capture many important characteristics of FEF neurons.
Specifically, the modeled neurons develop dual visual- and movement-related responses, their visual sensitivity
shifts across space around the time of saccades, and they respond more vigorously when visual stimulus in their
receptive field is the target of a saccade. Furthermore, both the visual and movement responses are relatively
early, consistent with a short-latency subpopulation of FEF neurons. The second aim is to assess a prediction
of the model, that expectations about saccades are encoded in FEF visual responses. To do this, we will record
single-neuron activity in the FEF of monkeys while they complete blocks of a delayed saccade Go/NoGo task.
The model predicts that manipulations of the probability or time at which a saccade follows a visual stimulus will
modify subsequent visual responses. The third aim is to determine how reward affects the visual sensitivity of
FEF neurons. We will alter the reward contingences in the Go/NoGo task to test if FEF neurons encode reward-
related information or if their apparent sensitivity to reward is at the service of encoding movement-related
information. The outcomes of the second and third aims will be applied to improve the model as needed and
generate new predictions. Collectively, this work will establish how the visual responses of FEF neurons are
shaped by experience about saccades and reward and provide a rigorous basis for understanding the formation
of priority maps in FEF. This basic knowledge is a prerequisite to identifying the source of deficits in saccadic
behavior in disorders like schizophrenia and autism. Through training opportunities during this project, I will
develop the skills necessary to transition from computational to experimental research.
项目摘要
眼睛的每一个运动都是动脉凹的刺激之间的竞争结果,
运动和其他潜在目标。人们认为额眼场(FEF)可以维持优先级的地图
结合有关刺激显着性的信息及其行为相关的信息
指导眼动。这项工作的目的是了解优先地图在FEF中的形成方式。这
总体假设是,FEF神经元通过学习预测扫视和结果,形成这些地图。
将各种感觉,运动和认知信号整合到反映的单数表示中
对扫视的时间和概率的期望。最近,我们开发了一个新颖的模拟
自然眼动行为过程中的联想学习允许测量视觉运动特性
由给定的学习目标产生的神经元。第一个目的是使用此模拟来确定FEF神经元是否
在计算机中,当他们学会预测扫视时,在体内发展了视觉运动特性。我们将
模拟多个FEF网络,每个网络旨在学习与动眼行为相关的不同目标和
表征每种属性的属性。我们的初步数据表明,当神经元预期
运动目标,它们的视觉运动特性捕获了FEF神经元的许多重要特征。
具体而言,建模的神经元会产生双重视觉和运动相关的响应,它们的视觉敏感性
在扫视时期,在空间上转移,当视觉刺激中的视觉刺激时,它们会更积极地做出反应
接受场是扫视的目标。此外,视觉和运动响应都是相对的
早期,与FEF神经元的短期亚群一致。第二个目的是评估预测
在模型中,对扫视的期望是在FEF视觉响应中编码的。为此,我们将记录
猴子FEF中的单神经元活动完成了延迟的扫视/nogo任务的块。
该模型预测,扫视遵循视觉刺激的概率或时间的操纵将
修改随后的视觉响应。第三个目的是确定奖励如何影响
FEF神经元。我们将更改go/nogo任务中的奖励偶然性,以测试FEF神经元是否编码奖励 -
相关信息或他们对奖励的明显敏感性是为与运动有关的编码
信息。第二和第三目的的结果将用于根据需要改进模型,并且
生成新的预测。总的来说,这项工作将确定FEF神经元的视觉反应如何
根据有关扫视和奖励的经验来塑造的,并为理解形成提供了严格的基础
FEF中的优先级地图。这种基本知识是识别Saccadic中缺陷来源的先决条件
精神分裂症和自闭症等疾病的行为。通过该项目期间的培训机会,我将
发展从计算到实验研究所需的技能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anthony James Alers其他文献
Anthony James Alers的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anthony James Alers', 18)}}的其他基金
Theoretical and Physiological Basis of Priority Maps in the Frontal Eye Field
额叶眼场优先级图的理论和生理基础
- 批准号:
10389556 - 财政年份:2022
- 资助金额:
$ 4.01万 - 项目类别:
相似国自然基金
无线供能边缘网络中基于信息年龄的能量与数据协同调度算法研究
- 批准号:62372118
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
NURBS参数化的自交理论与算法研究
- 批准号:12301490
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
- 批准号:52378011
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
分组密码算法后门的研究
- 批准号:62302293
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
时序深度可加网络的算法与学习理论研究
- 批准号:62306338
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Frontal-thalamo-cerebellar circuitry of attention deficit via imaging-genetic-environmental analyses
通过成像-遗传-环境分析观察注意力缺陷的额叶-丘脑-小脑回路
- 批准号:
10737357 - 财政年份:2023
- 资助金额:
$ 4.01万 - 项目类别:
Predicting 3D physical gene-enhancer interactions through integration of GTEx and 4DN data
通过整合 GTEx 和 4DN 数据预测 3D 物理基因增强子相互作用
- 批准号:
10776871 - 财政年份:2023
- 资助金额:
$ 4.01万 - 项目类别:
Secondary Analysis and Integration of Existing Data Related to Chronic Orofacial Pain and Placebo Effects - Administrative Supplement
与慢性口面部疼痛和安慰剂效应相关的现有数据的二次分析和整合 - 行政补充
- 批准号:
10741330 - 财政年份:2023
- 资助金额:
$ 4.01万 - 项目类别:
Predicting maladaptive aversive learning via computational modeling of insular single cell ensemble activity patterns
通过岛叶单细胞整体活动模式的计算模型来预测适应不良的厌恶学习
- 批准号:
10575313 - 财政年份:2023
- 资助金额:
$ 4.01万 - 项目类别:
Investigation and deployment of novel Bayesian inference algorithms in CAVATICA for identifying genomic variants underlying congenital heart defects in Down syndrome individuals
在 CAVATICA 中研究和部署新型贝叶斯推理算法,用于识别唐氏综合症个体先天性心脏缺陷的基因组变异
- 批准号:
10658217 - 财政年份:2023
- 资助金额:
$ 4.01万 - 项目类别: