Predicting maladaptive aversive learning via computational modeling of insular single cell ensemble activity patterns
通过岛叶单细胞整体活动模式的计算模型来预测适应不良的厌恶学习
基本信息
- 批准号:10575313
- 负责人:
- 金额:$ 1.52万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-03-08 至 2023-03-31
- 项目状态:已结题
- 来源:
- 关键词:Adaptive BehaviorsAffectAlgorithmsAmericanAnimal BehaviorAnimalsAnteriorAnxietyAnxiety DisordersAssociation LearningAuditoryAversive StimulusAvoidance LearningBehaviorBehavioralBrainBrain regionCalciumCellsComplexComputer ModelsCuesDataDecision MakingDevelopmentDiseaseExhibitsExtinctionFreezingFrightFutureGeneralized Anxiety DisorderGoalsHealth Care CostsHomeostasisHumanImageImpairmentIndividualInsula of ReilInterventionLearningMaintenanceMediatingMediatorMemoryMental DepressionMental disordersModelingMusNeural Network SimulationNeuronsNoseOutcomePainPanic DisorderPatternPhenotypePhobiasPhotonsPopulationPositioning AttributePost-Traumatic Stress DisordersPre-Clinical ModelProcessPsychopathologyPunishmentRegulationResistanceRodentSafetySensoryShockSignal TransductionSocial Anxiety DisorderStressStructureSymptomsTaste PerceptionTestingThalamic structureTheoretical modelTrainingavoidance behaviorbehavioral outcomebehavioral phenotypingcomputerized toolsconditioned fearcopingcostefficacious treatmentfear memoryfeedingfunctional adaptationin vivomaladaptive behaviorneuralneural circuitneurobiological mechanismneuromechanismneurotransmissionnovelnovel strategiesresponsestress disordertheoriestreatment strategy
项目摘要
Project Summary
Anxiety disorders such as panic disorders, generalized anxiety disorder, and post-traumatic stress disorder
(PTSD) affect approximately 18% of the American population with a health care cost of more than $42 billion a
year, a significant burden to the US economy. Development and maintenance of anxiety disorders have been
attributed to persistent fear memories, inadequate fear extinction, and maladaptive avoidance behavior. Thus,
it is imperative to understand the neural mechanisms underlying aversive learning in order to be able to develop
efficacious treatments for these disorders. In this project, we will focus on understanding the involvement of the
insula, a brain region heavily involved not only in aversive learning in general but also processes determining
approach/avoidance behaviors. Specifically, using in-vivo single cell calcium imaging via miniscopes, we will
record activity patterns of insular single cell ensembles during fear learning when the aversive outcome
(footshock) is inescapable as well as when the aversive outcome is omitted (fear extinction; Aim1a) and when
it becomes escapable (avoidance learning; Aim1b). Finally, using a novel theoretical-computational approach
to functionally cluster fear learning single cell ensembles in the insula, we will predict whether mice will develop
extinction resistant fear or impaired avoidance learning (Aim2). Thus, in this proposal, we aim to investigate the
involvement of the insular single cell ensembles in aversive learning and develop a novel computational tool to
predict future maladaptive aversive learning phenotypes based on the neural signaling in the insula.
项目摘要
焦虑症,例如恐慌症,普遍焦虑症和创伤后应激障碍
(PTSD)影响约18%的美国人口,医疗保健成本超过420亿美元
一年,这给美国经济带来了重大负担。焦虑症的发展和维持已经
归因于持续的恐惧记忆,不足的恐惧灭绝和适应不良的回避行为。因此,
必须了解厌恶学习的神经机制,以便能够发展
这些疾病有效治疗。在这个项目中,我们将专注于理解
岛上的大脑区域不仅在整体上厌恶学习,而且还可以处理确定的厌恶学习
方法/回避行为。具体而言,使用Miniscopes使用体内单细胞钙成像,我们将
记录恐惧学习期间孤立的单细胞集合的活动模式时厌恶结果
(脚印)是不可避免的,以及省略厌恶结果的何时(恐惧灭绝; aim1a)以及何时
它变得可以逃脱(回避学习; AIM1B)。最后,使用一种新颖的理论计算方法
为了在功能上群体恐惧学习岛上的单细胞集合,我们将预测小鼠是否会发展
抗灭绝的恐惧或回避学习受损(AIM2)。因此,在此提案中,我们旨在调查
隔离单细胞组合参与厌恶性学习,并开发出一种新颖的计算工具
基于绝缘体中神经信号传导预测未来的不良适应性厌恶学习表型。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Munir Gunes Kutlu其他文献
Munir Gunes Kutlu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
- 批准号:52378011
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
社交网络上观点动力学的重要影响因素与高效算法
- 批准号:62372112
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
员工算法规避行为的内涵结构、量表开发及多层次影响机制:基于大(小)数据研究方法整合视角
- 批准号:72372021
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
算法人力资源管理对员工算法应对行为和工作绩效的影响:基于员工认知与情感的路径研究
- 批准号:72372070
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
算法鸿沟影响因素与作用机制研究
- 批准号:72304017
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
A Micro-Randomized Trial to Optimize Just-in-Time Adaptive Intervention for Binge Eating & Weight-related Behaviors
优化暴饮暴食即时适应性干预的微随机试验
- 批准号:
10501064 - 财政年份:2022
- 资助金额:
$ 1.52万 - 项目类别:
A Micro-Randomized Trial to Optimize Just-in-Time Adaptive Intervention for Binge Eating & Weight-related Behaviors
优化暴饮暴食即时适应性干预的微随机试验
- 批准号:
10670994 - 财政年份:2022
- 资助金额:
$ 1.52万 - 项目类别:
An adaptive personalized text message intervention for cardiac prevention
用于心脏预防的自适应个性化短信干预
- 批准号:
9979221 - 财政年份:2020
- 资助金额:
$ 1.52万 - 项目类别:
Validation of a salivary miRNA diagnostic test for autism spectrum disorder
自闭症谱系障碍唾液 miRNA 诊断测试的验证
- 批准号:
9898174 - 财政年份:2019
- 资助金额:
$ 1.52万 - 项目类别:
SenseWhy: Overeating in Obesity Through the Lens of Passive Sensing.
SenseWhy:从被动感知的角度看肥胖症的暴饮暴食。
- 批准号:
10406434 - 财政年份:2018
- 资助金额:
$ 1.52万 - 项目类别: