Amino acid mimicry: Insights into glyphosate transport and toxicity to mitochondria
氨基酸拟态:深入了解草甘膦转运和线粒体毒性
基本信息
- 批准号:10573869
- 负责人:
- 金额:$ 7.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-02-10 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:AcuteAffectAmino AcidsAnimalsAromatic Amino AcidsAspartateBacteriaBindingBinding ProteinsBiochemicalBrainBypassCell CycleCellsChemical ExposureCytoplasmDNA DamageDataData SetDietDiseaseDown-RegulationEnzymesEvolutionFood ChainFood ContaminationFormulationFutureGenesGeneticGlutamate TransporterGlutamatesGoalsGrowthHealthHerbicidesHumanHuman DevelopmentMalate-Aspartate Shuttle PathwayMalatesMeasuresMetabolic DiseasesMetabolismMitochondriaMitochondrial ProteinsModelingNADHNutrientNutrient availabilityOccupational ExposureOrganOrganismPathway interactionsPenetrationPlantsPreparationRegulationRepressionReproductionResearchResistanceRoleSaccharomyces cerevisiaeSiteStructureSupplementationTestingTimeTissuesToxic effectTransportationUrineYeastscancer typeexperimental studyexposed human populationfungusgenome wide association studyglyphosategut microbiomeinnovationinsightmimicrymitochondrial metabolismmodel organismmutantnervous system disorderpermeasesensorshikimatesurfactanttranscriptomics
项目摘要
Extensive use of glyphosate-based herbicides (GBH) has led to glyphosate entering the food chain, and
causing human sera and urine levels to increase over time. This exposure has led to numerous claims that
glyphosate causes diseases ranging from multiple types of cancer to affecting human development and
reproduction. However, no mechanism of glyphosate import into human cells is known; in yeast, importation
occurs through the glutamate/ aspartate (D/E) transporters due to its structural resemblance. Glyphosate is
thought not to have acute effects on humans because they lack the shikimate pathway that produces aromatic
amino acids (WYF), which is inhibited in the presence of glyphosate, and humans instead acquire aromatic
amino acids through diet or the gut microbiome. The differences in commercial preparations of glyphosate
have complicated the studies because GBHs have surfactants that increase tissue penetration. Yeast can
bypass the inhibition of the shikimate pathway when supplemented with (WYF), which permits the assessment
of the role of surfactants or, more likely, discover the unknown glyphosate targets. Our initial studies have
found that genes regulating mitochondria, DNA damage, and the cell cycle are differentially regulated in GBH
treatments. The long-term goal is to identify the glyphosate transportation mechanisms into cells, the brain,
and other tissues that affect mitochondrial metabolism. This application's objective is to determine how
mitochondrial metabolism is affected by glyphosate alone and in commercial formulations in the model
organism S. cerevisiae. Our central hypothesis is that the transport of glyphosate is due to mimicry of
glutamate and aspartate; thus, it will affect other enzymes that utilize glutamate and aspartate, especially
within the mitochondria. The rationale of this proposal is that mitochondrial effects of glyphosate have a
biochemical basis and will provide a mechanistic understanding of cellular effects in vertebrate species.
Specific aims proposed are 1. Measure the import of glyphosate into different compartments in different
mutants and how adding D/E rescues growth inhibition from glyphosate 2. Measure changes in specific
mitochondrial metabolites (ATP and NADH) in glyphosate treated cells. The proposed research is innovative
because the hypothesis proposed is using unbiased experiments, such as genome-wide association,
transcriptomics, and In-Lab Evolution experiments to determine the mechanism of extra- and intracellular
glyphosate transport using D/E transporters. Glyphosate mimics D/E amino acids in transport, so it likely
affects other enzymes that use D/E, particularly in the mitochondria. In plants, fungi, and bacteria, D/E
transporters have all been implicated in glyphosate transport and glyphosate affecting mitochondrial functions.
While humans do not have the shikimate pathway, they have D/E transporters, and conserved mitochondrial
proteins that use D/E, which may be the off-targets of glyphosate leading to the range of diseases claimed to
have been caused by glyphosate.
广泛使用基于草甘膦的除草剂(GBH)导致草甘膦进入食物链,并且
导致人类血清和尿液水平随时间增加。这种暴露导致了许多主张
草甘膦会导致从多种类型的癌症到影响人类发展和
生殖。然而,没有草甘膦导入到人类细胞中的机制。在酵母中,进口
由于其结构相似,通过谷氨酸/天冬氨酸(D/ E)转运蛋白发生。草甘膦是
认为没有对人类产生急性影响,因为它们缺乏产生芳香的寒冷途径
氨基酸(WYF),在草甘膦存在下被抑制,而人类则获得芳香
通过饮食或肠道微生物组的氨基酸。草甘膦商业制剂的差异
由于GBH的表面活性剂会增加组织穿透性,因此使研究变得复杂。酵母可以
补充(WYF)时,绕过对光滑途径的抑制,这允许评估
表面活性剂的作用或更有可能发现未知的草甘膦靶标。我们的最初研究有
发现调节线粒体,DNA损伤和细胞周期的基因在GBH中受到差异调节
治疗。长期目标是鉴定草甘膦的运输机制,大脑,大脑,
以及其他影响线粒体代谢的组织。该应用程序的目标是确定如何
线粒体代谢受草甘膦的影响,在模型中的商业配方中受到影响
有机体S. cerevisiae。我们的中心假设是草甘膦的运输是由于模仿的
谷氨酸和天冬氨酸;因此,它将影响其他利用谷氨酸和天冬氨酸的酶,尤其是
在线粒体内。该提议的理由是草甘膦的线粒体效应具有
生化基础,将提供对脊椎动物物种细胞作用的机械理解。
提出的具体目的是1。测量草甘膦在不同的隔室中的进口
突变体以及添加D/E如何挽救草甘膦2的生长抑制作用2。衡量特定的变化
草甘膦处理细胞中的线粒体代谢物(ATP和NADH)。拟议的研究是创新的
因为提出的假设是使用公正的实验,例如全基因组关联,所以
转录组学和LAB内进化实验,以确定细胞外和细胞内的机理
使用D/E转运蛋白的草甘膦转运。草甘膦模仿运输中的D/E氨基酸,因此很可能
影响使用D/E的其他酶,尤其是在线粒体中。在植物,真菌和细菌中,D/E
转运蛋白都与草甘膦转运和影响线粒体功能的草甘膦有关。
虽然人类没有阳性途径,但它们具有D/E转运蛋白和保守的线粒体
使用d/e的蛋白质,这可能是草甘膦的非目标,导致声称的疾病范围
是由草甘膦引起的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jennifer Gallagher其他文献
Jennifer Gallagher的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jennifer Gallagher', 18)}}的其他基金
A Systems Approach to Understanding Effects of MCHM on Cellular Metabolism
理解 MCHM 对细胞代谢影响的系统方法
- 批准号:
9099093 - 财政年份:2016
- 资助金额:
$ 7.6万 - 项目类别:
相似国自然基金
低蛋白日粮脂肪和蛋白质互作影响氨基酸消化率的机制
- 批准号:32302793
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
关键非催化氨基酸残基影响新型GH43家族双功能酶底物特异性的机制研究
- 批准号:32301052
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
孕期母体支链氨基酸代谢紊乱和子代支链氨基酸代谢酶基因遗传变异联合作用对儿童神经行为发育影响的队列研究
- 批准号:82373581
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
影响植物磷砷选择性吸收关键氨基酸位点的挖掘及分子机制研究
- 批准号:42307009
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
RET基因634位点不同氨基酸改变对甲状腺C细胞的影响与机制研究
- 批准号:82370790
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
相似海外基金
Oxidative Stress and Mitochondrial Dysfunction in Chemogenetic Heart Failure
化学遗传性心力衰竭中的氧化应激和线粒体功能障碍
- 批准号:
10643012 - 财政年份:2023
- 资助金额:
$ 7.6万 - 项目类别:
Stabilizing the tripartite synaptic complex following TBI
TBI 后稳定三方突触复合体
- 批准号:
10844877 - 财政年份:2023
- 资助金额:
$ 7.6万 - 项目类别:
Shifting paradigms to emerging toxins in freshwater cyanobacterial blooms
淡水蓝藻水华中新出现的毒素的范式转变
- 批准号:
10912318 - 财政年份:2023
- 资助金额:
$ 7.6万 - 项目类别:
Role of Creatine Metabolism in Necrotizing Enterocolitis
肌酸代谢在坏死性小肠结肠炎中的作用
- 批准号:
10724729 - 财政年份:2023
- 资助金额:
$ 7.6万 - 项目类别:
Protein tyrosine phosphatase non-receptor 14 in vascular stability and remodeling
蛋白酪氨酸磷酸酶非受体 14 在血管稳定性和重塑中的作用
- 批准号:
10660507 - 财政年份:2023
- 资助金额:
$ 7.6万 - 项目类别: