Protein tyrosine phosphatase non-receptor 14 in vascular stability and remodeling

蛋白酪氨酸磷酸酶非受体 14 在血管稳定性和重塑中的作用

基本信息

项目摘要

ABSTRACT The vascular system is critical to life, infusing each organ of the body with oxygen and nutrients, and transporting and interacting with immune cells that protect the body. In the adult, maintenance of an intact vascular endothelium is under strict homeostatic control to prevent edema or hemorrhage. Wounding or tissue hypoxia can result in angiogenesis and vascular remodeling. The process of vascular homeostasis is highly regulated and involves many molecular players acting in concert. Under disease conditions, orchestration of these molecular processes may go awry. This is especially true in rare Mendelian disorders that are caused by mutations in key components of this machinery, such as Hereditary Hemorrhagic Telangiectasia (HHT), which is caused by loss of function mutations in ENG, ACVRL1, or SMAD4. Understanding the molecular underpinnings that regulate vascular homeostasis is critical to many diseases, including susceptibility to, and recovery from, acute lung injury and COVID-19. Here, we will investigate the role of protein tyrosine phosphatase non-receptor, type 14 (PTPN14) as a critical player in regulation of both blood and lymphatic vessel homeostasis. We previously showed that genetic variation within the PTPN14 gene associates with pulmonary arteriovenous malformations (AVMs) in HHT patients, and human genetics studies suggest a role for PTPN14 in lymphatic development and homeostasis. PTPN14 is an antagonist of YAP signaling and we have shown that it supports ALK1(ACVRL1)/SMAD4 signaling. We have identified several cis-eQTL in the PTPN14 gene that associated with PTPN14 expression and with the presence of pulmonary AVM in HHT, suggesting that PTPN14 expression levels influence AVM incidence. We have also identified two rare non- synonymous PTPN14 SNPs that segregate with AVMs and we will also determine how these affect PTPN14 function and molecular interactions with SMAD4 and YAP/TAZ. We will use human engineered microvessels under flow conditions to investigate the effects of PTPN14 knockdown or mutation, with or without ENG or ACVRL1 knockdown, on endothelial cell, size, proliferation, migration, alignment with flow, and vascular permeability under differing flow conditions. Finally, we will use our Cre-mediated Ptpn14-loxp allele, generated in-house, to investigate development of vascular and lymphatic malformations that result from genetic loss of Ptpn14 in endothelial or parenchymal cells in vivo, and examine how PTPN14 interacts with the BMP9- endoglin-ALK1 signaling pathway to modulate formation of AVMs in vivo. We will generate tamoxifen-inducible cell type-specific Ptpn14-/- and investigate how this affects developmental angiogenesis, pathological angiogenesis in wounded cornea, and vascular beds of adult lung, skin, liver, gut and brain. We will also investigate the effects of Ptpn14DiEC on Eng+/-, EngDiEC phenotypes to determine how these genes interact in vivo. Blood flow in the lung and potential arteriovenous malformations will be assessed using our new Quantum GX2 micro-CT imager obtained through an S10 grant.
抽象的 血管系统对生命至关重要,为身体的每个器官注入氧气和营养, 运输免疫细胞并与保护身体的免疫细胞相互作用。在成人中,维持完整的 血管内皮受到严格的稳态控制,以防止水肿或出血。伤口或组织 缺氧可导致血管生成和血管重塑。血管稳态过程高度复杂 受到监管并涉及许多分子参与者的协同行动。在疾病条件下,协调 这些分子过程可能会出错。对于罕见的孟德尔疾病尤其如此,这些疾病是由以下原因引起的: 该机制的关键组成部分发生突变,例如遗传性出血性毛细血管扩张症(HHT), 是由 ENG、ACVRL1 或 SMAD4 功能缺失突变引起的。了解分子 调节血管稳态的基础对于许多疾病至关重要,包括易感性和 从急性肺损伤和 COVID-19 中恢复。在这里,我们将研究蛋白质酪氨酸的作用 磷酸酶非受体 14 型 (PTPN14) 作为血液和淋巴调节的关键参与者 血管稳态。我们之前表明 PTPN14 基因内的遗传变异与 HHT 患者的肺动静脉畸形 (AVM) 和人类遗传学研究表明其在其中发挥着作用 PTPN14 在淋巴管发育和稳态中的作用。 PTPN14 是 YAP 信号传导的拮抗剂,我们 已表明它支持 ALK1(ACVRL1)/SMAD4 信号。我们已经在 PTPN14 基因与 PTPN14 表达以及 HHT 中肺 AVM 的存在相关, 表明 PTPN14 表达水平影响 AVM 发生率。我们还发现了两种罕见的非 与 AVM 分离的同义 PTPN14 SNP,我们还将确定它们如何影响 PTPN14 SMAD4 和 YAP/TAZ 的功能和分子相互作用。我们将使用人体工程微血管 在流动条件下研究 PTPN14 敲低或突变的影响,有或没有 ENG 或 AVRL1 敲低对内皮细胞、大小、增殖、迁移、血流对齐和血管的影响 不同流动条件下的渗透率。最后,我们将使用 Cre 介导的 Ptpn14-loxp 等位基因,生成 在内部,研究因基因缺失而导致的血管和淋巴畸形的发展 体内内皮细胞或实质细胞中的 Ptpn14,并检查 PTPN14 如何与 BMP9- 相互作用 内皮糖蛋白-ALK1 信号通路调节体内 AVM 的形成。我们将产生他莫昔芬诱导剂 细胞类型特异性 Ptpn14-/- 并研究其如何影响发育性血管生成、病理学 受伤的角膜以及成人肺、皮肤、肝脏、肠道和大脑的血管床中的血管生成。我们也会 研究 Ptpn14DiEC 对 Eng+/-、EngDiEC 表型的影响,以确定这些基因如何在 体内。将使用我们的新方法评估肺部血流和潜在的动静脉畸形 通过 S10 资助获得的 Quantum GX2 微型 CT 成像仪。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

ROSEMARY J AKHURST其他文献

ROSEMARY J AKHURST的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('ROSEMARY J AKHURST', 18)}}的其他基金

Advancing the translatability of mouse models for cancer immunotherapy
提高癌症免疫治疗小鼠模型的可转化性
  • 批准号:
    10414752
  • 财政年份:
    2021
  • 资助金额:
    $ 72.79万
  • 项目类别:
Circulating cells as tools to study vascular pathobiology of HHT
循环细胞作为研究 HHT 血管病理学的工具
  • 批准号:
    9063143
  • 财政年份:
    2015
  • 资助金额:
    $ 72.79万
  • 项目类别:
Circulating cells as tools to study vascular pathobiology of HHT
循环细胞作为研究 HHT 血管病理学的工具
  • 批准号:
    8825101
  • 财政年份:
    2015
  • 资助金额:
    $ 72.79万
  • 项目类别:
Circulating cells as tools to study vascular pathobiology of HHT
循环细胞作为研究 HHT 血管病理学的工具
  • 批准号:
    8916206
  • 财政年份:
    2014
  • 资助金额:
    $ 72.79万
  • 项目类别:
Acquired Resistance to TGFBR1 inhibitors and cancer stem cell outgrowth
对 TGFBR1 抑制剂的获得性耐药和癌症干细胞的生长
  • 批准号:
    8450144
  • 财政年份:
    2012
  • 资助金额:
    $ 72.79万
  • 项目类别:
Acquired Resistance to TGFBR1 inhibitors and cancer stem cell outgrowth
对 TGFBR1 抑制剂的获得性耐药和癌症干细胞的生长
  • 批准号:
    8228977
  • 财政年份:
    2012
  • 资助金额:
    $ 72.79万
  • 项目类别:
IVIS Spectrum Imaging System
IVIS 光谱成像系统
  • 批准号:
    8052964
  • 财政年份:
    2011
  • 资助金额:
    $ 72.79万
  • 项目类别:
PRECLINICAL THERAPEUTICS
临床前治疗
  • 批准号:
    7506568
  • 财政年份:
    2007
  • 资助金额:
    $ 72.79万
  • 项目类别:
TGF Signaling in Anti-Rejection Drug-Induced NMSC
抗排斥药物诱导的 NMSC 中的 TGF 信号转导
  • 批准号:
    7504434
  • 财政年份:
    2007
  • 资助金额:
    $ 72.79万
  • 项目类别:
"Genetic interactions between Tgfb1 and Skts15/Tgfbm3 in cancer"
“癌症中 Tgfb1 和 Skts15/Tgfbm3 之间的遗传相互作用”
  • 批准号:
    7755814
  • 财政年份:
    2007
  • 资助金额:
    $ 72.79万
  • 项目类别:

相似国自然基金

ACSS2介导的乙酰辅酶a合成在巨噬细胞组蛋白乙酰化及急性肺损伤发病中的作用机制研究
  • 批准号:
    82370084
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
急性肺损伤中Hippo通路调控肺泡中间过渡态上皮细胞再生分化机制研究
  • 批准号:
    82372185
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
土家药山姜通过调控中性粒细胞胞外捕获网的急性肺损伤保护作用及机制研究
  • 批准号:
    82360846
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
基于“肠肺轴”探讨迷迭香酸通过调控肠道菌群对LPS致急性肺损伤小鼠的保护作用及其机制
  • 批准号:
    32360897
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
肺泡巨噬细胞外泌体miR-122-5p调控肺泡II型上皮细胞自噬在脓毒症急性肺损伤中的作用及机制
  • 批准号:
    82360024
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Mechanical signaling through the nuclear membrane in lung alveolar health
通过核膜的机械信号传导影响肺泡健康
  • 批准号:
    10677169
  • 财政年份:
    2023
  • 资助金额:
    $ 72.79万
  • 项目类别:
The Role of Outpatient Diuretic Therapy in Bronchopulmonary Dysplasia
门诊利尿疗法在支气管肺发育不良中的作用
  • 批准号:
    10663469
  • 财政年份:
    2023
  • 资助金额:
    $ 72.79万
  • 项目类别:
p16INK4a+ fibroblasts regulate epithelial regeneration after injury in lung alveoli through the SASP
p16INK4a成纤维细胞通过SASP调节肺泡损伤后的上皮再生
  • 批准号:
    10643269
  • 财政年份:
    2023
  • 资助金额:
    $ 72.79万
  • 项目类别:
Patient Ventilator Asynchrony in Critically Ill Children
危重儿童患者呼吸机异步
  • 批准号:
    10657157
  • 财政年份:
    2023
  • 资助金额:
    $ 72.79万
  • 项目类别:
Midlife cardiovascular stress physiology and preclinical cerebrovascular disease
中年心血管应激生理学与临床前脑血管疾病
  • 批准号:
    10720054
  • 财政年份:
    2023
  • 资助金额:
    $ 72.79万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了