Deciphering how 3D genome organization orchestrates cardiac cellular identity
解读 3D 基因组组织如何协调心脏细胞身份
基本信息
- 批准号:10574267
- 负责人:
- 金额:$ 88.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-05-01 至 2030-04-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalArchitectureCardiacCellsChromatinDevelopmentDiseaseEngineeringEpigenetic ProcessEquilibriumFailureGene ExpressionGenesGenetic MaterialsGenetic TranscriptionGenomeGenomicsHeart DiseasesHeart failureHumanHuman BiologyLinkLongevityMaintenanceMechanicsModelingMolecularMultipotent Stem CellsNeural CrestNuclearNuclear LaminaPathologicPatientsPhysiologicalPositioning AttributeRegulationRepressor ProteinsResolutionShapesSignal TransductionTherapeuticThree-Dimensional ImagingTissuesVisionWorkcardiogenesiscell typecongenital heart disorderepigenomeflexibilitygenetic manipulationinterestmorphogensnovel therapeutic interventionprogramsrecruitshift workspatiotemporalsuperresolution imagingtranscription factor
项目摘要
Project Summary
During cardiac development, coordinate gene expression changes facilitate the progressive lineage restriction
of multipotent progenitors into a terminal identity that is maintained over their lifespan. Compromised
differentiation and/or cell state have been linked to multiple diseases, including aspects of congenital heart
disease and heart failure. Thus, the mechanisms underlying cellular identity are of intense interest. Models
underlying fate determination and the identity often focus on transcription factors and/or niche signals. Current
paradigms fail to reconcile how the interplay between a finite number of morphogens and lineage specific
transcription factors result in 200+ cell types with distinct and stable identities. I hypothesize that nuclear
architecture represents a critical mechanism for achieving coordinated regulation of hundreds of genes
underlying cellular identity by governing their accessibility or availability. Supporting our hypothesis, we have
built a strong body of work demonstrating that nuclear architecture regulates cardiac cellular identity in
development and disease. First, we discovered mechanisms by which critical transcription factors not only
govern transcription, but also choreograph genome folding to regulate cardiac neural crest fate determination.
Second, our work shows that spatial positioning of chromatin safeguards cardiac cellular identity and likely
contributes to human cardiac disease (i.e. laminopathies). Decades of work have shown that gene expression
programs are regulated by the recruitment and activity of activator and opposing repressor proteins. In addition
to revolutionizing our understanding of transcription, this work has led to therapies directly targeting transcription
factors. The mechanisms that similarly balance formation, maintenance and dissolution of nuclear architecture
are poorly understood. In the EIA application I outline an interdisciplinary vision to uncover how these
mechanisms control cardiac cellular identity. In Theme 1, I propose strategies to identify and decipher how
molecular players guiding establishment, maintenance and disassembly of genome folding impact cardiac cell
state. In Theme 2, I propose strategies to uncover how epigenetic, transcriptional, and mechanical inputs
regulate spatial positioning of the genome in relation to the nuclear lamina in physiologic and pathologic
conditions. We have established a multipronged program that will use high throughput 3D imaging, genetic
manipulations with precise spatiotemporal resolution, tunable cardiac microtissues, epigenome engineering,
super-resolution imaging and state-of-the-art genomics to tackle the propose studies, with a focus grounded in
physiological relevance. The orthogonal approaches promote rigor, but require flexibility. My strong track record
of building an impactful body of work support our pursuit of this paradigm shifting work. The proposed studies
have the potential to reshape our understanding of how epigenetics, transcriptional, and mechano-related
mechanisms direct 3D genome organization and orchestrate cardiac cellular identity. By viewing cardiac
diseases through the prism of genome organization, we predict a wealth of unrealized therapeutic opportunities.
项目摘要
在心脏发育期间,坐标基因表达变化有助于进行性谱系限制
多态祖细胞中的终端身份,该身份在其寿命中保持。妥协
分化和/或细胞状态已与多种疾病有关,包括先天性心脏的方面
疾病和心力衰竭。因此,细胞身份的基础机制具有强烈的关注。型号
基本的命运确定和身份通常集中在转录因子和/或利基信号上。当前的
范式无法调和有限数量的形态和谱系特定数量之间的相互作用
转录因子导致200多个具有不同身份的细胞类型。我假设核
建筑代表了实现数百个基因协调调节的关键机制
通过管理其可访问性或可用性来基本的蜂窝身份。支持我们的假设,我们有
建立了强大的工作,表明核建筑调节心脏细胞身份
发展与疾病。首先,我们发现了关键转录因子不仅
控制转录,但也要编舞基因组折叠以调节心脏神经冠的命运确定。
其次,我们的工作表明,染色质保障心脏细胞身份的空间定位,可能
有助于人类心脏病(即椎板病)。数十年的工作表明基因表达
程序受到激活剂和相对阻遏蛋白的募集和活动的调节。此外
为了彻底改变我们对转录的理解,这项工作导致疗法直接针对转录
因素。同样平衡核构建形成,维护和解散的机制
知之甚少。在EIA应用程序中,我概述了跨学科的愿景,以发现这些愿景
机制控制心脏细胞身份。在主题1中,我提出了识别和破译的策略
分子参与者指导基因组折叠撞击心脏细胞的建立,维护和拆卸
状态。在主题2中,我提出了策略,以发现表观遗传,转录和机械输入如何
调节基因组在生理和病理学中与核椎板相关的空间定位
状况。我们已经建立了一个多收益的程序,该程序将使用高吞吐量3D成像,遗传
具有精确时空分辨率,可调心脏微动物,表观基因组工程的操作,
超分辨率成像和最先进的基因组学以应对提出的研究,重点扎根于
生理相关性。正交方法可促进严格,但需要灵活性。我的出色记录
建立有影响力的工作支持我们追求这一范式转移工作。提出的研究
有可能重塑我们对表观遗传学,转录和机械相关的理解
机制直接3D基因组组织并编排心脏细胞身份。通过观看心脏
通过基因组组织的棱镜疾病,我们预测了许多未实现的治疗机会。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rajan Jain其他文献
Rajan Jain的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rajan Jain', 18)}}的其他基金
Single-cell dissection of chromatin architecture mechanisms connecting pathologic instability and transcriptional silencing
连接病理不稳定和转录沉默的染色质结构机制的单细胞解剖
- 批准号:
10116703 - 财政年份:2020
- 资助金额:
$ 88.44万 - 项目类别:
Single-cell dissection of chromatin architecture mechanisms connecting pathologic instability and transcriptional silencing
连接病理不稳定和转录沉默的染色质结构机制的单细胞解剖
- 批准号:
10473778 - 财政年份:2020
- 资助金额:
$ 88.44万 - 项目类别:
Single-cell dissection of chromatin architecture mechanisms connecting pathologic instability and transcriptional silencing
连接病理不稳定和转录沉默的染色质结构机制的单细胞解剖
- 批准号:
10268225 - 财政年份:2020
- 资助金额:
$ 88.44万 - 项目类别:
Single-cell dissection of chromatin architecture mechanisms connecting pathologic instability and transcriptional silencing
连接病理不稳定和转录沉默的染色质结构机制的单细胞解剖
- 批准号:
10684727 - 财政年份:2020
- 资助金额:
$ 88.44万 - 项目类别:
Decoding the bridges and barriers to cellular reprogramming and lineage identity
解码细胞重编程和谱系身份的桥梁和障碍
- 批准号:
10248408 - 财政年份:2019
- 资助金额:
$ 88.44万 - 项目类别:
Decoding the bridges and barriers to cellular reprogramming and lineage identity
解码细胞重编程和谱系身份的桥梁和障碍
- 批准号:
10461144 - 财政年份:2019
- 资助金额:
$ 88.44万 - 项目类别:
Decoding the bridges and barriers to cellular reprogramming and lineage identity
解码细胞重编程和谱系身份的桥梁和障碍
- 批准号:
10020996 - 财政年份:2019
- 资助金额:
$ 88.44万 - 项目类别:
Decoding the bridges and barriers to cellular reprogramming and lineage identity
解码细胞重编程和谱系身份的桥梁和障碍
- 批准号:
9790532 - 财政年份:2019
- 资助金额:
$ 88.44万 - 项目类别:
Investigating the role of Hopx in cardiac progenitor proliferation
研究 Hopx 在心脏祖细胞增殖中的作用
- 批准号:
8566353 - 财政年份:2013
- 资助金额:
$ 88.44万 - 项目类别:
相似国自然基金
“共享建筑学”的时空要素及表达体系研究
- 批准号:
- 批准年份:2019
- 资助金额:63 万元
- 项目类别:面上项目
基于城市空间日常效率的普通建筑更新设计策略研究
- 批准号:51778419
- 批准年份:2017
- 资助金额:61.0 万元
- 项目类别:面上项目
宜居环境的整体建筑学研究
- 批准号:51278108
- 批准年份:2012
- 资助金额:68.0 万元
- 项目类别:面上项目
The formation and evolution of planetary systems in dense star clusters
- 批准号:11043007
- 批准年份:2010
- 资助金额:10.0 万元
- 项目类别:专项基金项目
新型钒氧化物纳米组装结构在智能节能领域的应用
- 批准号:20801051
- 批准年份:2008
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Mitochondrial R-loop in sepsis-induced cardiomyopathy
脓毒症诱发的心肌病中的线粒体 R 环
- 批准号:
10586871 - 财政年份:2023
- 资助金额:
$ 88.44万 - 项目类别:
Novel bioengineering models to dissect cardiac cell-cell defects in arrhythmogenic cardiomyopathy
剖析致心律失常性心肌病心肌细胞缺陷的新型生物工程模型
- 批准号:
10667062 - 财政年份:2023
- 资助金额:
$ 88.44万 - 项目类别:
Machine Learning-Based Identification of Cardiomyopathy Risk in Childhood Cancer Survivors
基于机器学习的儿童癌症幸存者心肌病风险识别
- 批准号:
10730177 - 财政年份:2023
- 资助金额:
$ 88.44万 - 项目类别:
Motion-Resistant Background Subtraction Angiography with Deep Learning: Real-Time, Edge Hardware Implementation and Product Development
具有深度学习的抗运动背景减影血管造影:实时、边缘硬件实施和产品开发
- 批准号:
10602275 - 财政年份:2023
- 资助金额:
$ 88.44万 - 项目类别:
SCH: Al-driven Flexible Electronics for Cardiac Organoid Maturation
SCH:用于心脏类器官成熟的铝驱动柔性电子器件
- 批准号:
10816899 - 财政年份:2023
- 资助金额:
$ 88.44万 - 项目类别: