Mapping Trajectories of Alzheimer's Progression via Personalized Brain Anchor-nodes
通过个性化大脑锚节点绘制阿尔茨海默病的进展轨迹
基本信息
- 批准号:10571842
- 负责人:
- 金额:$ 54.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-15 至 2027-01-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAgingAlzheimer&aposs DiseaseAlzheimer&aposs disease diagnosisAlzheimer&aposs disease pathologyAnatomyAtlasesBiologyBrainBrain MappingClassificationClinicalComputational TechniqueDataData SetData SourcesDementiaDevelopmentDisease ProgressionEarly DiagnosisFunctional disorderHeterogeneityHourHumanImageImpairmentIndividualMagnetic Resonance ImagingMapsMeasuresMethodologyMethodsModelingMonitorMultimodal ImagingNatureNeurodegenerative DisordersPathway interactionsPatientsPatternPhasePopulationProcessPropertySeriesShapesStructureSurfaceSystemTestingTimeTreesWorkbiobankbrain basedcohortcomputerized toolsconnectomecostdeep learningdisease classificationflexibilityimage registrationimaging biomarkerimaging studyimprovedindividual variationinter-individual variationlarge scale datamultimodalityneural networkneuroimagingnormal agingpersonalized diagnosticspersonalized predictionspre-clinicalresponsetooltrend
项目摘要
Project Summary
Alzheimer’s disease (AD) is a heterogeneous neurodegenerative disorder, not only in pathophysiology, but also
at different disease progression stages. Despite numerous studies that have investigated the clinical utility of
magnetic resonance imaging (MRI) based biomarkers in characterizing AD stages from asymptomatic to mildly
symptomatic to dementia, making a personalized precision prediction and early diagnosis of AD is still
challenging. Existing imaging biomarkers are limited in representing significant heterogeneity across different
individuals and at different clinical stages. This challenge originates from the lack of reliable brain landmarks that
can simultaneously characterize and represent robust population correspondences and individual variation
during normal aging and AD progression. In response, this project aims to: 1) Identify a set of brain anchor-
nodes as population landmarks based on both group-wise consistent patterns and individualized anatomical and
connectivity properties during normal aging and AD progression among massive, publicly available neuroimaging
data sources; 2) Develop an efficient individualized shape transformation approach based on deep learning to
map population anchor-nodes to individual brains by flexibly leveraging multimodal individual features; and 3)
Construct a progression tree using anchor-nodes derived brain measures to unveil and represent the wide
spectrum of AD development. Individual subjects can thus be projected to the tree structure to effectively and
conveniently access their clinical status and predict the trend of AD progression. We will test our new frameworks
on four large independent aging/AD cohorts including HCP-Aging, UK Biobank, ADNI and the latest stage of
Open Access Series of Imaging Studies (OASIS-3), and freely release our computational tools and processed
data to the public.
项目摘要
阿尔茨海默氏病(AD)是一种异质性神经退行性疾病,不仅在病理生理学中,而且在
在不同的疾病进展阶段。尽管进行了许多研究,这些研究调查了
基于磁共振成像(MRI)的生物标志物在表征从无症状到轻度的AD阶段
对痴呆症的症状,做出个性化的精度预测和AD的早期诊断仍在
挑战。现有的成像生物标志物在代表不同的不同异质性方面受到限制
个人和不同的临床阶段。该挑战源于缺乏可靠的脑部标记
可以轻松地表征并表示强大的人口对应关系和个体变异
在正常衰老和AD进展过程中。作为回应,该项目的目的是:1)确定一组大脑锚定 -
节点作为人口地标,基于群体的一致模式和个性化的解剖学和
正常衰老期间的连通性特性和广泛可用的神经影像学的AD进展
数据源; 2)开发一种基于深度学习的有效的个性化形状转化方法
通过灵活利用多模式的个体特征,将种群锚节点映射到个体大脑。 3)
使用锚节点衍生的大脑措施构建进展树,以揭露并表示范围
广告发展的范围。因此,可以将个别受试者投射到树结构上,以有效地
方便地访问其临床状况并预测AD进展的趋势。我们将测试我们的新框架
在四个大型独立老龄化/广告群中
开放访问一系列成像研究(OASIS-3),并自由发布我们的计算工具并处理
向公众数据。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gang Li其他文献
Gang Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gang Li', 18)}}的其他基金
Developing an Individualized Deep Connectome Framework for ADRD Analysis
开发用于 ADRD 分析的个性化深度连接组框架
- 批准号:
10515550 - 财政年份:2022
- 资助金额:
$ 54.68万 - 项目类别:
Mapping Trajectories of Alzheimer's Progression via Personalized Brain Anchor-nodes
通过个性化大脑锚节点绘制阿尔茨海默病的进展轨迹
- 批准号:
10346720 - 财政年份:2022
- 资助金额:
$ 54.68万 - 项目类别:
Infant Functional Connectome Fingerprinting based on Deep Learning
基于深度学习的婴儿功能连接组指纹图谱
- 批准号:
10288361 - 财政年份:2021
- 资助金额:
$ 54.68万 - 项目类别:
Harmonizing and Archiving of Large-scale Infant Neuroimaging Data
大规模婴儿神经影像数据的协调和归档
- 批准号:
10189251 - 财政年份:2021
- 资助金额:
$ 54.68万 - 项目类别:
Parcellating Infant Cerebral Cortex based on Developmental Patterns of Multimodal MRI
基于多模态 MRI 发育模式的婴儿大脑皮层分区
- 批准号:
10162317 - 财政年份:2018
- 资助金额:
$ 54.68万 - 项目类别:
Continued Development of Infant Brain Analysis Tools
婴儿大脑分析工具的持续开发
- 批准号:
9755508 - 财政年份:2018
- 资助金额:
$ 54.68万 - 项目类别:
Using High Throughput Approach to Identify/Characterize Functional Variants on MS
使用高通量方法在 MS 上识别/表征功能变异
- 批准号:
9670361 - 财政年份:2018
- 资助金额:
$ 54.68万 - 项目类别:
Continued Development of Infant Brain Analysis Tools
婴儿大脑分析工具的持续开发
- 批准号:
9919645 - 财政年份:2018
- 资助金额:
$ 54.68万 - 项目类别:
Continued Development of Infant Brain Analysis Tools
婴儿大脑分析工具的持续开发
- 批准号:
10396127 - 财政年份:2018
- 资助金额:
$ 54.68万 - 项目类别:
Parcellating Infant Cerebral Cortex based on Developmental Patterns of Multimodal MRI
基于多模态 MRI 发育模式的婴儿大脑皮层分区
- 批准号:
10407000 - 财政年份:2018
- 资助金额:
$ 54.68万 - 项目类别:
相似国自然基金
来源和老化过程对大气棕碳光吸收特性及环境气候效应影响的模型研究
- 批准号:42377093
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
微纳核壳结构填充体系构建及其对聚乳酸阻燃、抗老化、降解和循环的作用机制
- 批准号:52373051
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
高层建筑外墙保温材料环境暴露自然老化后飞火点燃机理及模型研究
- 批准号:52376132
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
华北地区大气气溶胶长距离输送条件下单颗粒的来源及老化机制研究
- 批准号:42307141
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于波动法的叠层橡胶隔震支座老化损伤原位检测及精确评估方法研究
- 批准号:52308322
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
- 批准号:
10676358 - 财政年份:2024
- 资助金额:
$ 54.68万 - 项目类别:
The Influence of Lifetime Occupational Experience on Cognitive Trajectories Among Mexican Older Adults
终生职业经历对墨西哥老年人认知轨迹的影响
- 批准号:
10748606 - 财政年份:2024
- 资助金额:
$ 54.68万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 54.68万 - 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 54.68万 - 项目类别:
Project 3: 3-D Molecular Atlas of cerebral amyloid angiopathy in the aging brain with and without co-pathology
项目 3:有或没有共同病理的衰老大脑中脑淀粉样血管病的 3-D 分子图谱
- 批准号:
10555899 - 财政年份:2023
- 资助金额:
$ 54.68万 - 项目类别: