Developing an Individualized Deep Connectome Framework for ADRD Analysis
开发用于 ADRD 分析的个性化深度连接组框架
基本信息
- 批准号:10515550
- 负责人:
- 金额:$ 168.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-08-18 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:Alzheimer&aposs DiseaseAlzheimer&aposs disease related dementiaAlzheimer’s disease biomarkerAmericasAnatomyArchitectureBase of the BrainBiological MarkersBrainBrain MappingClinicalClinical assessmentsCommunitiesComputing MethodologiesDataData SetDementiaDementia with Lewy BodiesDevelopmentDiagnosisDiffusion Magnetic Resonance ImagingFamilyFree WillFunctional Magnetic Resonance ImagingGoalsHealthcare SystemsHeterogeneityHourHumanIndividualInfrastructureLearningLewy Body DementiaMagnetic Resonance ImagingMapsMeasuresMethodsModalityMultimodal ImagingParkinson&aposs DementiaPathologyPatientsPopulationProcessPublic HealthResearchShapesStructureSurfaceSymptomsSystemTechniquesTimeTrainingWorkbasebiobankclinical predictorscomputerized toolsconnectomeconnectome datacostdeep learningdeep learning modeldiagnostic criteriaflexibilityfluorodeoxyglucose positron emission tomographyhuman old age (65+)individual patientindividual variationinnovationinterestmental stateneural networkneuroimagingneuroimaging markernormal agingresponsesingle photon emission computed tomographytool
项目摘要
As the most and the second most common type of dementia, AD and Lewy body dementias (LBD), including
dementia with Lewy bodies and Parkinson’s disease dementia, account for 65% to 85% individuals with
AD/ADRD. Misdiagnosis between AD and ADRD, e.g., AD vs. LBD, will lead to non-beneficial, incomplete, or
even harmful treatment and management options. Comparing to diagnosis and prediction of AD from normal
aging, differentiation between AD and LBD is very challenging, due to both mixed pathologies and clinical
symptoms. Current MRI-based neuroimaging studies are limited to group-wise analysis between AD and LBD
patients and controls, and there are significant challenges in dealing with the remarkable heterogeneity in
AD/ADRD pathologies and clinical symptoms, and in pinpointing specific and subtle abnormalities across
different individual AD/ADRD brains. In this project, we will significantly advance and integrate our powerful
methods/tools and apply them to multiple AD/LBD datasets to discover and identify individualized connectome-
scale differences between AD and LBD, by leveraging the cutting-edge deep learning techniques. Specifically,
we will 1) discover, define and represent individual GyralNets to characterize brain connectome heterogeneity
and AD/LBD related abnormalities for individual AD/LBD patient; 2) learn a cortical surface transformation to
align GyralNets from population to individuals using unsupervised spherical networks and 3) develop a new
infrastructure to integrate multiple types of connectome data including anatomical, structural and functional
connectome, and characterize, represent and summarize their deep relationship as a “individual connectome
signature” by maximizing its prediction capability between AD and LBD.
作为最常见的痴呆症最常见的类型,AD和Lewy身体痴呆症(LBD),包括
Lewy身体和帕金森氏病痴呆症的痴呆症占65%至85%的患者
广告/adrd。 AD和ADRD之间的误诊,例如AD与LBD,将导致非脱皮,不完整或
甚至有害的治疗和管理选择。与正常的诊断和AD预测相比
衰老,AD和LBD之间的区分非常挑战,由于病理混合和临床
症状。当前基于MRI的神经影像学研究仅限于AD和LBD之间的小组分析
患者和对照,在处理显着的异质性方面面临重大挑战
AD/ADRD病理和临床症状,以及指出跨越特定和微妙的异常
不同的个人广告/大脑。在这个项目中,我们将大大促进并整合我们的强大
方法/工具并将其应用于多个AD/LBD数据集,以发现和识别个性化的Connectome-
通过利用尖端的深度学习技术,AD和LBD之间的比例差异。具体来说,
我们将1)发现,定义和表示单个旋转以表征大脑连接组异质性
单个AD/LBD患者的AD/LBD相关异常; 2)学习皮层表面转化
使用无监督的球形网络将gyralnets从人群与个体保持一致,3)开发一个新的
基础架构以整合多种类型的连接组数据,包括解剖,结构和功能
connectome且特征是代表并总结他们的深厚关系为“单个连接组
签名”通过最大化其AD和LBD之间的预测能力。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gang Li其他文献
Gang Li的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gang Li', 18)}}的其他基金
Mapping Trajectories of Alzheimer's Progression via Personalized Brain Anchor-nodes
通过个性化大脑锚节点绘制阿尔茨海默病的进展轨迹
- 批准号:
10571842 - 财政年份:2022
- 资助金额:
$ 168.66万 - 项目类别:
Mapping Trajectories of Alzheimer's Progression via Personalized Brain Anchor-nodes
通过个性化大脑锚节点绘制阿尔茨海默病的进展轨迹
- 批准号:
10346720 - 财政年份:2022
- 资助金额:
$ 168.66万 - 项目类别:
Infant Functional Connectome Fingerprinting based on Deep Learning
基于深度学习的婴儿功能连接组指纹图谱
- 批准号:
10288361 - 财政年份:2021
- 资助金额:
$ 168.66万 - 项目类别:
Harmonizing and Archiving of Large-scale Infant Neuroimaging Data
大规模婴儿神经影像数据的协调和归档
- 批准号:
10189251 - 财政年份:2021
- 资助金额:
$ 168.66万 - 项目类别:
Parcellating Infant Cerebral Cortex based on Developmental Patterns of Multimodal MRI
基于多模态 MRI 发育模式的婴儿大脑皮层分区
- 批准号:
10162317 - 财政年份:2018
- 资助金额:
$ 168.66万 - 项目类别:
Continued Development of Infant Brain Analysis Tools
婴儿大脑分析工具的持续开发
- 批准号:
9755508 - 财政年份:2018
- 资助金额:
$ 168.66万 - 项目类别:
Using High Throughput Approach to Identify/Characterize Functional Variants on MS
使用高通量方法在 MS 上识别/表征功能变异
- 批准号:
9670361 - 财政年份:2018
- 资助金额:
$ 168.66万 - 项目类别:
Continued Development of Infant Brain Analysis Tools
婴儿大脑分析工具的持续开发
- 批准号:
9919645 - 财政年份:2018
- 资助金额:
$ 168.66万 - 项目类别:
Continued Development of Infant Brain Analysis Tools
婴儿大脑分析工具的持续开发
- 批准号:
10396127 - 财政年份:2018
- 资助金额:
$ 168.66万 - 项目类别:
Parcellating Infant Cerebral Cortex based on Developmental Patterns of Multimodal MRI
基于多模态 MRI 发育模式的婴儿大脑皮层分区
- 批准号:
10407000 - 财政年份:2018
- 资助金额:
$ 168.66万 - 项目类别:
相似国自然基金
基于脑-脊髓-视神经MRI影像特征的神经免疫疾病影像亚型及其分子生物学机制的多组学研究
- 批准号:82330057
- 批准年份:2023
- 资助金额:220 万元
- 项目类别:重点项目
间质性肺疾病致肺气体交换功能改变的超极化129Xe MRI定量研究
- 批准号:82372150
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
缺血性脑卒中疾病中NLRP6磷酸化修饰的鉴定及其在调控炎性小体活化中的作用和机制研究
- 批准号:82302474
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
小胶质细胞清除后骨髓移植延缓csf1r点突变小鼠疾病进展的机制研究
- 批准号:82301526
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
数据驱动的心血管疾病区域协同医疗服务研究
- 批准号:72301123
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Uncovering Mechanisms of Racial Inequalities in ADRD: Psychosocial Risk and Resilience Factors for White Matter Integrity
揭示 ADRD 中种族不平等的机制:心理社会风险和白质完整性的弹性因素
- 批准号:
10676358 - 财政年份:2024
- 资助金额:
$ 168.66万 - 项目类别:
Small Molecule Degraders of Tryptophan 2,3-Dioxygenase Enzyme (TDO) as Novel Treatments for Neurodegenerative Disease
色氨酸 2,3-双加氧酶 (TDO) 的小分子降解剂作为神经退行性疾病的新疗法
- 批准号:
10752555 - 财政年份:2024
- 资助金额:
$ 168.66万 - 项目类别:
The Influence of Lifetime Occupational Experience on Cognitive Trajectories Among Mexican Older Adults
终生职业经历对墨西哥老年人认知轨迹的影响
- 批准号:
10748606 - 财政年份:2024
- 资助金额:
$ 168.66万 - 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
- 批准号:
10749539 - 财政年份:2024
- 资助金额:
$ 168.66万 - 项目类别: