Where there is no death certificate: Using artificial intelligence to detect high-casualty epidemics from satellite imagery of burial sites - Resubmission - 1
在没有死亡证明的情况下:使用人工智能从埋葬地点的卫星图像中检测高伤亡流行病 - 重新提交 - 1
基本信息
- 批准号:10576534
- 负责人:
- 金额:$ 27.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-12 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AIDS/HIV problemAddressAfrica South of the SaharaAlgorithmic AnalysisAlgorithmsArchitectureAreaArtificial IntelligenceBackBereavementBurialCOVID-19COVID-19 pandemicCessation of lifeCommunicable DiseasesContainmentCountryDataData CollectionData ReportingData SourcesDeath CertificatesDetectionDiabetes MellitusDisastersDiseaseEpidemicEventFoundationsFundingFutureGoldGrowthHIVHealthImageImageryInformation SystemsInfrastructureLabelLightingLocationLong COVIDMalignant NeoplasmsManualsMarshalMeasurementMethodsNatureNeurodevelopmental DisorderPatientsPerformancePopulationPovertyProcessReportingResearchResolutionResourcesSavingsSiteSpottingsTanzaniaTestingTimeTrainingTraumaValidationVisitWorkYemenalgorithm trainingartificial intelligence algorithmauthoritybaseconvolutional neural networkcostdesigndetection platformfallsfood insecurityhealth care service utilizationhealth care settingshealth disparityimage processingimprovedinnovationlong-term sequelaelow and middle-income countriesmachine visionmortalityneural network algorithmnovelpandemic diseaseperformance testspreventprospectivescale upstatisticssuccesstooltransfer learning
项目摘要
Detecting high-casualty epidemics is essential for health authorities to prospectively reduce disease spread
and retrospectively address health conditions in an epidemic’s aftermath – which for infectious diseases can
include cancer, diabetes, neurodevelopmental disorders, “long COVID,” and other sequelae. Unfortunately,
many low- and middle-income countries (LMICs) lack data systems for epidemic detection, and thus are ill-
equipped to mobilize resources to reduce the spread of epidemics and address their health effects. The
COVID-19 pandemic saw some of the first efforts to detect mortality during an epidemic using satellite imagery
of burial sites. Though successful, these were small “one-off” efforts because manual analysis of satellite
imagery is extremely labor-intensive. We propose to develop an algorithm for fully-automated measurement of
burial site occupancy using satellite imagery. Our exploratory research will focus on Tanzania, which typifies a
high-priority use case for such an algorithm because it was hard-hit by the two deadliest pandemics of the past
century – HIV/AIDS and COVID-19 – and has not officially reported COVID-19 statistics since May 2020.
Our algorithm will act upon already-collected satellite imagery, which can be obtained for any given area of
Tanzania – and, indeed, the world – dating no more than two weeks back. In Aim 1, we will develop a region-
based convolutional neural network (R-CNN) to automatically count the occupancy of burial sites using the
most current available imagery. We will manually label burial plots in images for algorithm training and testing,
and will validate the labeling with field visits to count the true occupancy of burial sites. In Aim 2, we will
develop a novel “spot-the-difference” CNN (SD-CNN) to compare occupancy in earlier vs. later imagery of the
same site. We hypothesize that the SD-CNN will be more accurate than the R-CNN because the algorithm
would have information about what a site looked like at an earlier time-point and can be trained to notice new
burial plots while ignoring “background” changes such as lighting and vegetation. We again train and test the
algorithm using labeled imagery and will validate our labeling with field visits in which we will observe date
markers on burial plots. Finally, in Aim 3, we will test the ability of the algorithm to identify changes in mortality
due to epidemics. In Tanzania we expect burial sites to show a rise in mortality due to HIV/AIDS, a fall due to
scale-up of HIV treatment, and an abrupt rise due to COVID-19. Our preliminary observations of satellite data
confirm marked increases in burial site occupancy in Tanzania over the year 2020 relative to 2019.
If successful, our algorithm will enable the world’s first low-cost, scalable, and globally equitable epidemic
detection platform. Retrospectively, our research could help to identify areas hardest-hit by COVID-19, helping
LMICs to marshal much-needed funding to address the pandemic’s aftermath. Prospectively, our research
could help to keep humanity safer from future pandemics, especially those that arise in LMICs and may
otherwise go undetected or unreported until it is too late.
检测高度休闲事件对于卫生当局前瞻性减少疾病传播至关重要
回顾性地解决流行病的健康状况 - 对于传染病,可以
包括癌症,糖尿病,神经发育障碍,“长卷”和其他后遗症。很遗憾,
许多低收入和中等收入国家(LMIC)缺乏用于流行病的数据系统,因此
配备了动员资源,以减少流行病的传播并解决其健康影响。这
COVID-19大流行是使用卫星图像在流行病期间检测死亡率的一些首次努力
埋葬地点。尽管成功,但它们是小的“一次性”努力,因为手动分析卫星
图像是实验室密集型的。我们建议开发一种用于完全自动测量的算法
使用卫星图像埋葬现场占用。我们的探索性研究将集中于坦桑尼亚,这是
这种算法的高优先级用例
Century - HIV/AIDS和COVID-19-自2020年5月以来,尚未正式报道Covid-19的统计数据。
我们的算法将采取已收集的卫星图像,可以在任何给定的区域获得
坦桑尼亚 - 确实是世界 - 约会不超过两周。在AIM 1中,我们将开发一个地区 -
基于卷积神经网络(R-CNN),可以自动计算使用埋葬地点的占用
当前最可用的图像。我们将在图像中手动标记算法训练和测试的图像,
并将通过实地访问来验证标签,以计算埋葬地点的真正占用。在AIM 2中,我们将
开发出小说的“斑点差异” CNN(SD-CNN),以比较早期的占用率与后来的图像
同一网站。我们假设SD-CNN比R-CNN更准确,因为该算法
会有关于网站在较早时间点的外观的信息,并且可以接受培训以注意新的
埋葬地块,忽略“背景”变化,例如照明和植被。我们再次训练并测试
使用标签图像的算法,并将通过现场访问验证我们的标签,我们将在其中观察日期
埋葬地上的标记。最后,在AIM 3中,我们将测试算法识别死亡率变化的能力
由于情节。在坦率
艾滋病毒治疗的扩大,以及由于19号而突然上升。我们对卫星数据的初步观察
相对于2019年,坦桑尼亚的墓地入住率明显明显增加。
如果成功,我们的算法将使世界上第一个低成本,可扩展和全球公平的流行病
检测平台。回顾性地,我们的研究可以帮助确定Covid-19的最严重打击的领域,并帮助
LMIC备受谨慎的资金,以解决大流行的后果。前瞻性,我们的研究
可以帮助使人类从未来的大流行中更安全,尤其是那些在LMIC中出现的人,并且可能
否则,直到为时已晚。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anna Bershteyn其他文献
Anna Bershteyn的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anna Bershteyn', 18)}}的其他基金
Leveraging HIV care systems to improve cardiovascular disease prevention in the Kingdom of eSwatini
利用艾滋病毒护理系统改善埃斯瓦蒂尼王国的心血管疾病预防
- 批准号:
10700286 - 财政年份:2023
- 资助金额:
$ 27.68万 - 项目类别:
Rapid Tests for Recent Infection (RTRI) for Precision Public Health in Sub-Saharan Africa: Next-Generation Strategies Amid Changing HIV Epidemiology
撒哈拉以南非洲地区近期感染快速检测 (RTRI) 实现精准公共卫生:艾滋病毒流行病学变化中的下一代策略
- 批准号:
10620014 - 财政年份:2022
- 资助金额:
$ 27.68万 - 项目类别:
When are in-person HIV services worth the risk of COVID-19 and other communicable illnesses? Optimizing choices when virtual services are less effective
什么时候值得冒着感染 COVID-19 和其他传染病的风险去接受面对面的 HIV 服务?
- 批准号:
10481333 - 财政年份:2022
- 资助金额:
$ 27.68万 - 项目类别:
Where there is no death certificate: Using artificial intelligence to detect high-casualty epidemics from satellite imagery of burial sites - Resubmission - 1
在没有死亡证明的情况下:使用人工智能从埋葬地点的卫星图像中检测高伤亡流行病 - 重新提交 - 1
- 批准号:
10703509 - 财政年份:2022
- 资助金额:
$ 27.68万 - 项目类别:
Can mental health services break the cycle perpetuating HIV hotspots in sub-Saharan Africa?
精神卫生服务能否打破撒哈拉以南非洲地区艾滋病毒热点的恶性循环?
- 批准号:
10327032 - 财政年份:2021
- 资助金额:
$ 27.68万 - 项目类别:
Can mental health services break the cycle perpetuating HIV hotspots in sub-Saharan Africa?
精神卫生服务能否打破撒哈拉以南非洲地区艾滋病毒热点的恶性循环?
- 批准号:
10407660 - 财政年份:2021
- 资助金额:
$ 27.68万 - 项目类别:
Can mental health services break the cycle perpetuating HIV hotspots in sub-Saharan Africa?
精神卫生服务能否打破撒哈拉以南非洲地区艾滋病毒热点的恶性循环?
- 批准号:
10580081 - 财政年份:2021
- 资助金额:
$ 27.68万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
INTEGRATING A TRANSDIAGNOSTIC PSYCHOLOGICAL INTERVENTION IN THE CARE FOR ADOLESCENTS AND YOUTH WITH HIV IN KENYA
将跨诊断心理干预纳入肯尼亚艾滋病毒感染青少年的护理中
- 批准号:
10675988 - 财政年份:2023
- 资助金额:
$ 27.68万 - 项目类别:
Affordable Robot-Based Assessment of Cognitive and Motor Impairment in People Living with HIV and HIV-Stroke
经济实惠的基于机器人的艾滋病毒感染者和艾滋病毒中风患者认知和运动障碍评估
- 批准号:
10751316 - 财政年份:2023
- 资助金额:
$ 27.68万 - 项目类别:
Adapting mHealth interventions to improve self-management of HIV and substance use among emerging adults in Zambia
采用移动医疗干预措施,改善赞比亚新兴成年人对艾滋病毒和药物滥用的自我管理
- 批准号:
10813460 - 财政年份:2023
- 资助金额:
$ 27.68万 - 项目类别:
Testing the Efficacy of Safe South Africa: An Intervention to Prevent HIV Risk and Interpersonal Violence Among Adolescent Boys
测试安全南非的功效:预防青春期男孩艾滋病毒风险和人际暴力的干预措施
- 批准号:
10700232 - 财政年份:2023
- 资助金额:
$ 27.68万 - 项目类别:
Integration of a collaborative care model for mental health services into HIV care for pregnant and postpartum women in Kenya (the Tunawiri Study)
将心理健康服务协作护理模式纳入肯尼亚孕妇和产后妇女的艾滋病毒护理(图纳维里研究)
- 批准号:
10676019 - 财政年份:2023
- 资助金额:
$ 27.68万 - 项目类别: