Improving the design and statistical analysis of cluster-randomized trials on tropical infectious diseases

改进热带传染病整群随机试验的设计和统计分析

基本信息

  • 批准号:
    10570440
  • 负责人:
  • 金额:
    $ 9.36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-05-17 至 2024-04-30
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY This Pathway to Independence Award application is submitted by a statistician committed to improving the design and analysis of tropical infectious disease cluster-randomized trials (CRTs). Worldwide, hundreds of CRTs are carried out annually to evaluate the effect of new interventions against infectious diseases, especially in tropical developing countries experiencing dengue, Ebola, malaria, and other infectious disease outbreaks. The scientific rigor of these CRTs relies on valid statistical analysis methods that adequately address the complexity in the CRT designs. However, the emergence of CRTs with complex and novel designs has outpaced the development of causal inference methods for data analysis. This gap represents a key barrier to providing valid sample size calculation, efficient estimation, and correct interpretation of the intervention effect estimates. The overarching goal of this research is to surmount this barrier by developing valid, robust, and efficient statistical methods. Specifically, the applicant will address the statistical challenges of three CRT designs: (1) covariate-adaptive randomization, which has been extensively used for reducing baseline imbalance, (2) the test-negative design, which has been increasingly popular in recent years for achieving cost-efficiency, and (3) the multi-arm stepped-wedge design, which has the potential to improve flexibility and efficiency for future CRTs. In the K99 phase, the applicant will extend the empirical process theory to handle covariate-adaptive randomization in CRTs and provide both theoretical and computation evaluations of current statistical models. During the first year of the R00 phase, the applicant will focus on test- negative designs in CRTs and eliminate the bias from differential healthcare-seeking behavior by characterizing the underlying causal graph and performing inference on self-nondiagnosable symptoms. Finally, the applicant will develop an optimal design that can simultaneously handle treatment roll-out, multiple interventions, and various outcome types. The applicant will accomplish the research aims under the mentorship of established researchers in infectious disease, statistics, and biostatistics to assure his transition to a tenure-track faculty position in the R00 phase and his emergence as a leading infectious disease biostatistician. At the University of Pennsylvania, the applicant enjoys rich internal resources of courses, seminars, computational equipment, collaborations, and intellectual interactions with prestigious researchers; furthermore, the applicant has access to external training opportunities including summer institutes, national conferences, and hands-on learning in trial conduct in Kenya. These training activities will propel the research career of the application, thereby supporting his achieving academic independence and ultimately leading a research team to advance the research of infectious diseases.
项目概要 此“独立之路奖”申请由一位致力于改善经济状况的统计学家提交。 热带传染病整群随机试验(CRT)的设计和分析。在全球范围内,有数百 每年进行一次 CRT,以评估针对传染病的新干预措施的效果, 特别是在患有登革热、埃博拉、疟疾和其他传染病的热带发展中国家 爆发。这些 CRT 的科学严谨性依赖于有效的统计分析方法,这些方法充分 解决 CRT 设计的复杂性。然而,设计复杂新颖的CRT的出现 已经超过了数据分析因果推理方法的发展。这个差距是一个关键 提供有效样本量计算、有效估计和正确解释的障碍 干预效果估计。这项研究的总体目标是通过开发来克服这一障碍 有效、稳健且高效的统计方法。具体来说,申请人将解决统计挑战 三种 CRT 设计:(1) 协变量自适应随机化,已广泛用于减少 基线不平衡,(2)测试阴性设计,近年来越来越流行 实现成本效益,以及(3)多臂阶梯楔形设计,有可能提高 未来 CRT 的灵活性和效率。在K99阶段,申请人将延长经验流程 处理 CRT 中协变量自适应随机化的理论并提供理论和计算 当前统计模型的评估。在 R00 阶段的第一年,申请人将重点测试- CRT 中的负面设计,并通过以下方式消除差异化医疗保健行为带来的偏差: 描述潜在的因果图并对自我无法诊断的症状进行推断。 最后,申请人将开发一种最佳设计,可以同时处理治疗推出、多项治疗 干预措施和各种结果类型。申请人将完成以下研究目标 传染病、统计学和生物统计学领域知名研究人员的指导,以确保他的过渡 到 R00 阶段的终身教授职位以及他作为主要传染病的出现 生物统计学家。在宾夕法尼亚大学,申请者享有丰富的内部课程资源, 研讨会、计算设备、与著名研究人员的合作和智力互动; 此外,申请人还有机会获得外部培训机会,包括暑期学院、国家培训 会议以及在肯尼亚进行的试验中的实践学习。这些培训活动将推动研究 应用程序的职业生涯,从而支持他实现学术独立并最终领导 研究团队推进传染病研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bingkai Wang其他文献

Bingkai Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

Competitive Bidding in Medicare and the Implications for Home Oxygen Therapy in COPD
医疗保险竞争性招标以及对慢性阻塞性肺病家庭氧疗的影响
  • 批准号:
    10641360
  • 财政年份:
    2023
  • 资助金额:
    $ 9.36万
  • 项目类别:
Ultra-precision clinical imaging and detection of Alzheimers Disease using deep learning
使用深度学习进行超精密临床成像和阿尔茨海默病检测
  • 批准号:
    10643456
  • 财政年份:
    2023
  • 资助金额:
    $ 9.36万
  • 项目类别:
Genetic and Environmental Influences on Individual Sweet Preference Across Ancestry Groups in the U.S.
遗传和环境对美国不同血统群体个体甜味偏好的影响
  • 批准号:
    10709381
  • 财政年份:
    2023
  • 资助金额:
    $ 9.36万
  • 项目类别:
Preventing Firearm Suicide Deaths Among Black/African American Adults
防止黑人/非裔美国成年人因枪支自杀死亡
  • 批准号:
    10811498
  • 财政年份:
    2023
  • 资助金额:
    $ 9.36万
  • 项目类别:
Statistical Methods for Whole-Brain Dynamic Connectivity Analysis
全脑动态连接分析的统计方法
  • 批准号:
    10594266
  • 财政年份:
    2023
  • 资助金额:
    $ 9.36万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了