Molecular Mechanisms of Photoreceptor Adaptation

光感受器适应的分子机制

基本信息

项目摘要

Project Summary Our sense of vision begins when single rod and cone photoreceptors absorb light and produce an electrical signal, which higher centers in the brain then analyze to alter our behavior. We learn even as children that rods are the photoreceptors we use to see dim light and cones to see bright light and color. This view is supported by behavioral measurements and electrical recording, which all seem to show that rods are primarily used to detect dim light and become essentially non-functional as the ambient illumination increases during daylight. Recent experiments have however challenged this notion and demonstrated that rods can continue to respond even in light so strong that a large fraction of the rod photopigment is bleached. These observations challenge our understanding of rod function in bright light. The purpose of this study is to thoroughly reexamine rod current and voltage responses to persistent bright illumination over extended durations of time. Our preliminary evidence shows surprisingly that the responsiveness of rods can recover over the course of hours during persistent bright illumination. Here we are seeking to investigate the molecular and mechanistic basis of this rod recovery and its dependence on time and light intensity in mice. In particular, we will leverage several lines of transgenic mice having targeted mutations in components of the phototransduction cascade. We also are interested in how photoresponse recovery in rods can be made faster and more robust, as observed in cones. We we will explore these phenomena by genetically transferring certain molecular features of cone phototransduction into the rods by leveraging mice with targeted mutations to reduce the sensitivity of rods and increase the rate of photoresponse and photopigment decay. We hope to show which factors are responsible for the differential responsiveness of the two photoreceptors in bright light. These phenomena are not only important to our understanding of the physiology of photoreceptors, they are also essential for photoreceptor survival because rods die when outer- segment channels remain closed for too long a time. In addition, understanding how to make rod photoreceptors more like cones may have therapeutic value, as deficiencies in cone vision may be mitigated by shifting the responsiveness of rods to brighter background light intensities. Because of the importance of these phenomena to photoreceptor function in health and disease, the Retinal Disease Program of the NEI has as one of its program objectives to “analyze the mechanisms underlying light adaptation and recovery following phototransduction”.
项目摘要 当单杆和锥形光感受器吸收光并产生一个时,我们的视力开始 电信号,较高的大脑中心,然后分析以改变我们的行为。我们甚至学到 棒的孩子是我们用来看到昏暗的光线和圆锥体的光感受器,以看到明亮的光线和颜色。这 视图受到行为测量和电气记录的支持,这似乎都表明杆是 首先用于检测昏暗的光,并随着环境照明的增加而实质上是非功能的 在白天。然而,最近的实验挑战了这一观念,并证明了杆可以 即使在如此强烈的光线下继续做出响应,以至于将大部分的杆显影作物漂白。这些 观察挑战了我们在明亮的光线下对杆功能的理解。这项研究的目的是 彻底重新检查杆电流和对持续的明亮照明的电压响应 时间的持续时间。我们的初步证据表明,杆的响应能力可以恢复 在持续的明亮照明期间的时间里。在这里,我们试图调查 该杆恢复的分子和机械基础及其对小鼠的时间和光强度的依赖。 特别是,我们将利用具有针对性突变成分的几行转基因小鼠 光转导级联。我们也对如何在杆上进行光电恢复感兴趣 如在锥体中所观察到的,更快,更健壮。我们将通过基因探索这些现象 通过利用与小鼠的相关小鼠,将锥形光转导的某些分子特征转移到棒中 靶向突变,以降低杆的灵敏度并提高光响应速率和照相的速率 衰变。我们希望表明哪些因素是两者的差异反应的原因 光感受器在明亮的光线下。这些现象不仅对我们对 光感受器的生理学,它们对于光感受器存活也是必不可少的,因为杆在外部时死亡 细分频道的关闭时间过长。此外,了解如何制作杆 由于锥体视觉的缺陷可能会减轻,因此更像锥体的感光器可能具有治疗价值 通过将杆的响应能力转移到更明亮的背景光强度上。由于重要性 这些现象与光感受器在健康和疾病中的功能,NEI的视网膜疾病计划 它是其计划目标之一,用于“分析光适应和恢复的机制 遵循光转移”。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alapakkam P Sampath其他文献

Alapakkam P Sampath的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alapakkam P Sampath', 18)}}的其他基金

Molecular Mechanisms of Photoreceptor Adaptation
光感受器适应的分子机制
  • 批准号:
    10337225
  • 财政年份:
    2019
  • 资助金额:
    $ 41.74万
  • 项目类别:
Vision Science Training Program
视觉科学培训计划
  • 批准号:
    10249158
  • 财政年份:
    2017
  • 资助金额:
    $ 41.74万
  • 项目类别:
Vision Science Training Program
视觉科学培训计划
  • 批准号:
    9767188
  • 财政年份:
    2017
  • 资助金额:
    $ 41.74万
  • 项目类别:
Vision Science Training Program
视觉科学培训计划
  • 批准号:
    9280428
  • 财政年份:
    2017
  • 资助金额:
    $ 41.74万
  • 项目类别:
Functional characteristics of rod pathways in the retina
视网膜视杆细胞通路的功能特征
  • 批准号:
    8885831
  • 财政年份:
    2014
  • 资助金额:
    $ 41.74万
  • 项目类别:
Functional characteristics of rod pathways in the retina
视网膜视杆细胞通路的功能特征
  • 批准号:
    8699775
  • 财政年份:
    2014
  • 资助金额:
    $ 41.74万
  • 项目类别:
Functional characteristics of rod pathways in the retina
视网膜视杆细胞通路的功能特征
  • 批准号:
    8790366
  • 财政年份:
    2014
  • 资助金额:
    $ 41.74万
  • 项目类别:
Functional characteristics of rod pathways in the retina
视网膜视杆细胞通路的功能特征
  • 批准号:
    8185121
  • 财政年份:
    2006
  • 资助金额:
    $ 41.74万
  • 项目类别:
Functional characteristics of rod pathways in the retina
视网膜中视杆细胞通路的功能特征
  • 批准号:
    7659552
  • 财政年份:
    2006
  • 资助金额:
    $ 41.74万
  • 项目类别:
Functional characteristics of rod pathways in the retina
视网膜视杆细胞通路的功能特征
  • 批准号:
    8306747
  • 财政年份:
    2006
  • 资助金额:
    $ 41.74万
  • 项目类别:

相似国自然基金

海洋缺氧对持久性有机污染物入海后降解行为的影响
  • 批准号:
    42377396
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于大塑性变形晶粒细化的背压触变反挤压锡青铜偏析行为调控研究
  • 批准号:
    52365047
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
锡(铋、铟)氧/硫化物在CO2电还原过程中的重构行为与催化机制研究
  • 批准号:
    52372217
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
中熵合金低温协同强化及其多场耦合环境下应力腐蚀行为的研究
  • 批准号:
    52371070
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
城市污水厂生物除臭系统生物膜微界面微生物逸散行为及机制
  • 批准号:
    52370026
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    $ 41.74万
  • 项目类别:
    Studentship
CAREER: A cortex-basal forebrain loop enabling task-specific cognitive behavior
职业:皮层基底前脑环路实现特定任务的认知行为
  • 批准号:
    2337351
  • 财政年份:
    2024
  • 资助金额:
    $ 41.74万
  • 项目类别:
    Continuing Grant
Conference: 2024 Photosensory Receptors and Signal Transduction GRC/GRS: Light-Dependent Molecular Mechanism, Cellular Response and Organismal Behavior
会议:2024光敏受体和信号转导GRC/GRS:光依赖性分子机制、细胞反应和生物体行为
  • 批准号:
    2402252
  • 财政年份:
    2024
  • 资助金额:
    $ 41.74万
  • 项目类别:
    Standard Grant
Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
  • 批准号:
    2318855
  • 财政年份:
    2024
  • 资助金额:
    $ 41.74万
  • 项目类别:
    Continuing Grant
Collaborative Research: Subduction Megathrust Rheology: The Combined Roles of On- and Off-Fault Processes in Controlling Fault Slip Behavior
合作研究:俯冲巨型逆断层流变学:断层上和断层外过程在控制断层滑动行为中的综合作用
  • 批准号:
    2319848
  • 财政年份:
    2024
  • 资助金额:
    $ 41.74万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了