Development of a closed-loop control system for plasma medicine

血浆医学闭环控制系统的开发

基本信息

项目摘要

Project Summary Plasma medicine is a promising, relatively new field that encompasses the discovery and development of biomedical applications for cold plasma (a.k.a. non-thermal, non-equilibrium, or atmospheric plasma). Cold plasma is generated in several forms by using a strong electromagnetic field to ionize gas at atmospheric pressure and ambient temperature. When cold plasma is applied to living cells or tissues, the effects can range from subtle changes in cellular metabolism and function to programmed or necrotic cell death, dependent on plasma properties (or amount of plasma). In therapeutic strategies involving plasma, the dose delivered is an important determinant of a successful treatment. A sub-optimal plasma dose may be ineffective, while a plasma dose in excess of that required to achieve the desired outcome may cause adverse side effects. However, no real-time measure of an effective plasma dose exists. The determination and controlled delivery of a plasma dose, at present, relies on empirical measures of outcome that assess secondary or tertiary effects of plasma hours to days after the exposure. There is a critical need for regulation of cold plasma delivery that uses concurrent measurement of primary plasma effectors (markers) that correlate with biological and clinical outcomes (endpoints) necessary to define plasma dose. The objective of this grant is to develop endpoint detection strategies for plasma-based therapies, using plasma-facilitated wound repair as the endpoint and oxidation-reduction potential (ORP) as the primary detectable marker. The hypothesis is that there is a link between the absolute ORP and cellular responses, allowing us to develop an ORP sensor-based method that monitors the plasma dose and feeds this information in a closed-loop control system. The proposed research is innovative because it will use ORP detection as the basis for a sensor-controlled, closed-loop feedback control system that will regulate plasma delivery as determined by the endpoint outcome. Collaborative investigational and development efforts will combine experience in models of in vivo wound healing (Rutgers University), in vitro models of epithelial wound repair, and plasma biology (Drexel University) with expertise in device engineering and plasma chemistry (North Carolina State University). The proposed research is framed around the following specific aims: (1) Establish correlations between CAP dose ranges, measurable biological parameters and wound healing outcomes using in vivo and in vitro models of wound healing; (2) correlate sensor outputs with cellular responses in the in vitro scratch assay; (3) develop a closed-loop control system for regulated plasma delivery; and (4) challenge and optimize the controller in vitro and in vivo. Our focus on endpoint detection and feedback control for wound healing will facilitate developmental efforts for this particular therapeutic use of plasma, but will also provide a solid foundation for applying endpoint detection to other translational applications of cold plasma, including therapies for dermatological conditions, cancer, and infections by viral and bacterial pathogens.
项目概要 血浆医学是一个有前途的、相对较新的领域,包括发现和开发 冷等离子体(又称非热等离子体、非平衡等离子体或大气等离子体)的生物医学应用。寒冷的 通过使用强电磁场电离大气中的气体,可以产生多种形式的等离子体 压力和环境温度。当冷等离子体应用于活细胞或组织时,会产生一系列影响 从细胞代谢和功能的微妙变化到程序性或坏死性细胞死亡,取决于 血浆特性(或血浆量)。在涉及血浆的治疗策略中,输送的剂量是 治疗成功的重要决定因素。次优血浆剂量可能无效,而血浆 超过达到预期结果所需的剂量可能会导致不良副作用。然而,没有 存在有效血浆剂量的实时测量。血浆的测定和控制输送 目前,剂量依赖于评估血浆二级或三级效应的经验结果测量 暴露后数小时至数天。迫切需要使用冷血浆输送进行调节 同时测量与生物学和临床相关的初级血浆效应物(标记物) 定义血浆剂量所需的结果(终点)。这笔赠款的目的是开发端点 基于血浆的治疗的检测策略,使用血浆促进伤口修复作为终点, 氧化还原电位(ORP)作为主要可检测标记。假设存在一个链接 绝对 ORP 和细胞反应之间的关系,使我们能够开发一种基于 ORP 传感器的方法 监测血浆剂量并将该信息输入闭环控制系统。拟议的研究是 创新,因为它将使用 ORP 检测作为传感器控制的闭环反馈控制的基础 系统将根据终点结果来调节血浆输送。合作研究 开发工作将结合体内伤口愈合模型(罗格斯大学)和体外的经验 上皮伤口修复模型和血浆生物学(德雷克塞尔大学),具有设备工程专业知识 和等离子体化学(北卡罗来纳州立大学)。拟议的研究框架围绕以下内容 具体目标: (1) 建立 CAP 剂量范围、可测量的生物参数和 使用体内和体外伤口愈合模型的伤口愈合结果; (2) 将传感器输出与 体外划痕试验中的细胞反应; (3)开发调节等离子体闭环控制系统 送货; (4)在体外和体内挑战并优化控制器。我们专注于端点检测和 伤口愈合的反馈控制将促进这种特殊治疗用途的开发工作 等离子,但也将为将终点检测应用于其他转化应用提供坚实的基础 冷血浆,包括皮肤病、癌症以及病毒和细菌感染的治疗 病原体。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Francois Berthiaume其他文献

Francois Berthiaume的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Francois Berthiaume', 18)}}的其他基金

Development of a closed-loop control system for plasma medicine
血浆医学闭环控制系统的开发
  • 批准号:
    10444706
  • 财政年份:
    2022
  • 资助金额:
    $ 42.69万
  • 项目类别:
Multifunctional Nanoparticles Containing sRAGE Potentiated Bioactive Peptides for Wound Healing
含有 sRAGE 增强生物活性肽的多功能纳米粒子,用于伤口愈合
  • 批准号:
    9181870
  • 财政年份:
    2016
  • 资助金额:
    $ 42.69万
  • 项目类别:
Multifunctional Nanoparticles Containing sRAGE Potentiated Bioactive Peptides for Wound Healing
含有 sRAGE 增强生物活性肽的多功能纳米粒子,用于伤口愈合
  • 批准号:
    9310393
  • 财政年份:
    2016
  • 资助金额:
    $ 42.69万
  • 项目类别:
Improved Dermal Scaffolds for Skin Regeneration
改善皮肤再生的真皮支架
  • 批准号:
    7659039
  • 财政年份:
    2009
  • 资助金额:
    $ 42.69万
  • 项目类别:
Improved Dermal Scaffolds for Skin Regeneration
改善皮肤再生的真皮支架
  • 批准号:
    7869383
  • 财政年份:
    2009
  • 资助金额:
    $ 42.69万
  • 项目类别:

相似国自然基金

时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

The WUSTL PREP post-bacc program to enhance doctoral readiness in neuroscience
WUSTL PREP post bacc 项目旨在提高神经科学博士的准备程度
  • 批准号:
    10611674
  • 财政年份:
    2023
  • 资助金额:
    $ 42.69万
  • 项目类别:
Assessing Clinical Effectiveness and Implementation of Worksite Sleep Health Coaching in Firefighters
评估消防员工作现场睡眠健康指导的临床效果和实施情况
  • 批准号:
    10585123
  • 财政年份:
    2023
  • 资助金额:
    $ 42.69万
  • 项目类别:
2023 Atherosclerosis
2023 动脉粥样硬化
  • 批准号:
    10675221
  • 财政年份:
    2023
  • 资助金额:
    $ 42.69万
  • 项目类别:
CTSA K12 Program at The University of Iowa
爱荷华大学 CTSA K12 项目
  • 批准号:
    10621593
  • 财政年份:
    2023
  • 资助金额:
    $ 42.69万
  • 项目类别:
BiOengineering Research Education to AcceLerate Innovation in STEM
生物工程研究教育加速 STEM 创新
  • 批准号:
    10652133
  • 财政年份:
    2023
  • 资助金额:
    $ 42.69万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了