Automating Delirium Identification and Risk Prediction in Electronic Health Records
电子健康记录中谵妄的自动化识别和风险预测
基本信息
- 批准号:10091381
- 负责人:
- 金额:$ 37.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-02-15 至 2022-12-31
- 项目状态:已结题
- 来源:
- 关键词:AcuteAddressAdultAffectAgreementAlabamaAlgorithmsAllyAssessment toolAutomationCaringCharacteristicsClinical ResearchCognitionCognitiveComputational algorithmConfusionConsensusDataData AnalysesData SetDeliriumDescriptorDetectionDevelopmentDiagnostic testsDiscipline of NursingDiseaseElderlyElectronic Health RecordEpidemiologyFoundationsGrowthHealth systemHospitalsImpaired cognitionIndividualInpatientsInstitutesInstitutionalizationLaboratoriesLinkLogisticsLong-Term Care for ElderlyMachine LearningMeasurableMedicalMethodsModelingMonitorNatural Language ProcessingNursesNursing StaffOperative Surgical ProceduresPatientsPatternPattern RecognitionPersonsPreventionPropertyProviderROC CurveReference StandardsResearchResourcesRiskRisk FactorsSample SizeSamplingSigns and SymptomsTestingTextTimeTrainingUniversitiesValidationacute careadverse outcomebasecare costsconfusion assessment methoddata miningepidemiology studyfunctional declinefunctional disabilityhealth care settingshigh dimensionalityhuman old age (65+)improvedinstrumentinterestlarge scale datamodel developmentmortality risknovelnovel strategiespatient stratificationphrasesprediction algorithmprogramsrisk predictionrisk prediction modelscreeningvalidation studiesvirtualward
项目摘要
Abstract. Delirium, or acute confusional state, affects 30-40% of hospitalized older adults, with the added cost
of care estimated to be up to $7 billion. Although originally conceptualized as a transient disorder, delirium is now
recognized to have significant consequences, including increased risk of death, functional decline, and long-term
cognitive impairment. As up to 75% cases are not recognized by providers, there is an urgent need for additional
methods to identify delirium for clinical and research purposes, and to stratify patients based on delirium risk. In
this proposal, we present a novel approach to the identification of delirium based on large-scale data mining (i.e.,
pattern recognition) algorithms using machine learning and natural language processing applied to electronic
health record (EHR) data, which will automate chart-based determination of delirium status and risk prediction.
We will combine these algorithms with data collected through our recently implemented Virtual Acute Care for
Elders (ACE) quality improvement project, which institutes delirium screening once per shift by nursing staff for
all individuals over age 65 admitted to the University of Alabama at Birmingham (UAB) Hospital. This unprece-
dented volume of data will allow us to achieve the necessary sample sizes for effective training and validation of
our data mining algorithms. Data mining algorithms that discover patterns of associations in data, rather than
testing predetermined hypotheses, are well suited to application in large-scale algorithms for identification of
delirium. Using our Virtual ACE and hospital EHR data, we will be able to evaluate more than 10,000 individual
features (e.g., text words and phrases, laboratory and other diagnostic tests, concurrent medical conditions) as-
sociated with delirium, which will be classified as risk factors for delirium, as signs, symptoms, and descriptors
of delirium itself, and as complications and consequences of delirium, based on expert consensus. We will then
use these features to develop rules for identification of delirium in the EHR, as well as risk prediction models that
can be integrated into the EHR to provide individualized assessments of delirium risk. This study will lay the
foundation for methods of automated delirium identification and risk prediction in healthcare settings that are
unable to implement the screening by providers done in our Virtual ACE, as well as for large-scale epidemiological
investigations of delirium using EHR data, expanding the current armamentarium for studying this common and
debilitating disorder.
抽象的。 del妄或急性混乱状态会影响30-40%的住院老年人,增加了费用
估计高达70亿美元的护理。尽管最初被概念化为短暂疾病,但现在是
公认会产生重大后果,包括增加死亡风险,功能下降和长期
认知障碍。由于提供者未认识到多达75%的案件,因此迫切需要额外
识别用于临床和研究目的del妄的方法,并根据ir妄风险对患者进行分层。在
这项建议,我们提出了一种基于大规模数据挖掘的del妄的新方法(即
模式识别)使用机器学习和应用于电子的自然语言处理算法
健康记录(EHR)数据将自动化基于图表的ir妄状态和风险预测的确定。
我们将将这些算法与通过最近实施的虚拟急性护理收集的数据相结合
长者(ACE)质量改进项目,该项目每班一次del妄筛查一次
所有65岁以上的人都被伯明翰(UAB)医院的阿拉巴马大学入院。这个无与伦比的
凹痕的数据量将使我们能够实现必要的样本量,以进行有效的培训和验证
我们的数据挖掘算法。数据挖掘算法发现数据中关联的模式,而不是
测试预定的假设非常适合用于大规模算法以识别
谵妄。使用我们的虚拟ACE和医院EHR数据,我们将能够评估10,000多个个人
特征(例如,文本和短语,实验室和其他诊断测试,同时医疗状况)
通过del妄社交,将被归类为ir妄的风险因素,作为符号,症状和描述符
基于专家共识的del妄本身,以及del妄的并发症和后果。然后我们会
使用这些功能来制定识别EHR中ir妄的规则,以及风险预测模型
可以集成到EHR中,以提供对ir妄风险的个性化评估。这项研究将为
自动化ir妄识别和风险预测方法的基础
无法实施我们虚拟ACE和大规模流行病学的提供者的筛选
使用EHR数据研究ir妄的调查,扩大了目前的arammentarium,以研究这种常见和
使人衰弱的障碍。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RICHARD E KENNEDY其他文献
RICHARD E KENNEDY的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RICHARD E KENNEDY', 18)}}的其他基金
Automating Delirium Identification and Risk Prediction in Electronic Health Records (Supplement)
电子健康记录中谵妄的自动化识别和风险预测(补充)
- 批准号:
10410694 - 财政年份:2019
- 资助金额:
$ 37.69万 - 项目类别:
Automating Delirium Identification and Risk Prediction in Electronic Health Records
电子健康记录中谵妄的自动化识别和风险预测
- 批准号:
10341053 - 财政年份:2019
- 资助金额:
$ 37.69万 - 项目类别:
In Silico Screening of Medications for Slowing Alzheimer's Disease Progression.
减缓阿尔茨海默病进展药物的计算机筛选。
- 批准号:
9884696 - 财政年份:2017
- 资助金额:
$ 37.69万 - 项目类别:
Mixed Effects Modeling of Microarrays Using the S-score
使用 S 分数对微阵列进行混合效应建模
- 批准号:
6935669 - 财政年份:2005
- 资助金额:
$ 37.69万 - 项目类别:
Mixed Effects Modeling of Microarrays Using the S-score
使用 S 分数对微阵列进行混合效应建模
- 批准号:
7121993 - 财政年份:2005
- 资助金额:
$ 37.69万 - 项目类别:
Mixed Effects Modeling of Microarrays Using the S-score
使用 S 分数对微阵列进行混合效应建模
- 批准号:
7272023 - 财政年份:2005
- 资助金额:
$ 37.69万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Climate Change Effects on Pregnancy via a Traditional Food
气候变化通过传统食物对怀孕的影响
- 批准号:
10822202 - 财政年份:2024
- 资助金额:
$ 37.69万 - 项目类别:
Developing Real-world Understanding of Medical Music therapy using the Electronic Health Record (DRUMMER)
使用电子健康记录 (DRUMMER) 培养对医学音乐治疗的真实理解
- 批准号:
10748859 - 财政年份:2024
- 资助金额:
$ 37.69万 - 项目类别:
Early life bladder inflammatory events in female mice lead to subsequent LUTS in adulthood
雌性小鼠生命早期的膀胱炎症事件导致成年后的 LUTS
- 批准号:
10638866 - 财政年份:2023
- 资助金额:
$ 37.69万 - 项目类别:
Mechanisms of Juvenile Neurogenesis and Post-Stroke Recovery: Determining the Role of Age-Associated Neuroimmune Interactions
青少年神经发生和中风后恢复的机制:确定与年龄相关的神经免疫相互作用的作用
- 批准号:
10637874 - 财政年份:2023
- 资助金额:
$ 37.69万 - 项目类别:
Role of skeletal muscle IPMK in nutrient metabolism and exercise
骨骼肌IPMK在营养代谢和运动中的作用
- 批准号:
10639073 - 财政年份:2023
- 资助金额:
$ 37.69万 - 项目类别: