TR&D Project 3: Virtual Readers
TR
基本信息
- 批准号:10089804
- 负责人:
- 金额:$ 28.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:AddressAdoptionAlgorithmsAnatomyArtificial IntelligenceBenchmarkingCategoriesClassificationClinicalClinical DataClinical TrialsCommunitiesComplexComputer AssistedDataData ScienceData SetDatabasesDetectionDevelopmentDiseaseEducationElementsEnsureEvaluationFutureHumanImageImage AnalysisImaging PhantomsImaging technologyInstitutionIonizing radiationLesionMachine LearningManufacturer NameMathematicsMeasurementMeasuresMedicalMedical ImagingModalityModelingMorphologyPatientsPerceptionPerformancePhaseProtocols documentationRadiation Dose UnitReaderReadingReproducibilityResearchResource DevelopmentResourcesScienceScientistSpeedSystemTechnologyTechnology AssessmentTestingTextureTrainingTranscendTranslatingUncertaintyVariantWorkX-Ray Computed Tomographybasebeneficiarybioimagingclinical imagingcomparativedeep learningdesigndisease diagnosisexperienceindexinginteroperabilitymembermodel designopen dataquantitative imagingradiologistradiomicsresearch clinical testingtechnology developmenttechnology research and developmenttooltrendvirtualvirtual imagingvirtual patientvirtual platform
项目摘要
ABSTRACT – TRD3: Virtual Readers
The Center proposes virtual imaging trials (VITs), a new paradigm to evaluate rapidly advancing imaging
technologies, including computed tomography (CT). VITs offer a computational alternative to the evaluation of
these technologies through clinical trials, which are slow, expensive, and often lack ground truth, while
exposing subjects to ionizing radiation. The Center will develop a VIT platform to emulate key elements of the
imaging chain from virtual patients (TRD1) to virtual scanners (TRD2) to virtual readers (TRD3). The virtual
reader, the focus of this TRD, are defined as image analysis tools that emulate and extend the clinical reading
of images for specific tasks or needs such as lesion detection, classification, or measurement. Specifically, the
virtual readers comprise three representative categories: observer models, radiomics, and machine learning.
Virtual readers can efficiently and effectively analyze the vast amounts of data in imaging trials, be they clinical
or simulated. To date, most virtual reader approaches have been limited by their narrow focus, uncertainty of
ground truth (normal anatomy and disease), or lack of interoperability. As a result, these technologies have not
yet been translated broadly. To address this unmet need, TRD3 will codify a suite of easy-to-use virtual reader
tools to enable not only VITs but also a wide range of other medical image evaluation needs.
This work will proceed in three Specific Aims: (1) implement an observer model and radiomics toolset for task-
based assessment of CT images, (2) create deep learning resources for analysis and processing of CT
images, and (3) integrate virtual reader utilities into a unified VIT platform and validate it against studies with
real images and radiologists. While TRD3 focuses primarily on virtual readers, as the final technology
development project of the Center, it will also validate Center resources as a whole.
The deliverables of TRD3 include the following: (1) virtual reader tools that go beyond niche applications and
generalize to different subjects, systems, and tasks; (2) performance assessment that is informed by
controllable ground truth for both normal anatomy and disease; (3) “estimability index” to assess bias and
precision of virtual reader metrics; (4) machine learning tools that perform disease detection and classification
as well as data augmentation, all of which are crucial to VITs; (5) resources for medical imaging that transcend
VITs with applications including clinical evaluation and education, and (6) benchmark databases and
performance levels that facilitate a culture of open science where technology assessment becomes fair and
reproducible. TRD3 will have a significant impact on clinical imaging science and practice by not only enabling
effective ways of evaluating imaging technology but also spurring new developments in data science for
medical imaging. The virtual reader resources combined with myriad clinical and simulated image data of the
Center will provide the essential framework to enable VITs in CT imaging and beyond.
摘要 – TRD3:虚拟读者
该中心提出虚拟成像试验(VIT),这是一种评估快速发展的成像的新范例
技术,包括计算机断层扫描 (CT),为评估提供了一种计算替代方案。
这些技术需要通过临床试验,但速度慢、成本高,而且往往缺乏事实真相,而
该中心将开发一个 VIT 平台来模拟实验的关键要素。
从虚拟患者 (TRD1) 到虚拟扫描仪 (TRD2) 再到虚拟读取器 (TRD3) 的成像链。
阅读器是本 TRD 的焦点,被定义为模拟和扩展临床阅读的图像分析工具
用于特定任务或需求(例如病变检测、分类或测量)的图像。
虚拟读者包括三个代表性类别:观察者模型、放射组学和机器学习。
虚拟阅读器可以高效、有效地分析影像试验中的大量数据,无论是临床试验还是临床试验。
迄今为止,大多数虚拟阅读器方法都因其焦点狭窄、不确定性而受到限制。
地面真相(正常解剖和疾病)或缺乏互操作性因此,这些技术没有。
为了解决这一未满足的需求,TRD3 将编写一套易于使用的虚拟阅读器。
工具不仅可以满足 VIT,还可以满足广泛的其他医学图像评估需求。
这项工作将按照三个具体目标进行:(1)为任务实施观察者模型和放射组学工具集
基于CT图像的评估,(2)创建用于CT分析和处理的深度学习资源
图像,(3) 将虚拟阅读器实用程序集成到统一的 VIT 平台中,并根据研究进行验证
而 TRD3 主要关注虚拟读取器,作为最终技术。
中心的发展项目,也将验证中心的整体资源。
TRD3 的交付成果包括:(1) 超越利基应用程序的虚拟阅读器工具
(2) 绩效评估的依据
正常解剖和疾病的可控基本事实;(3)“可估计性指数”来评估偏差和
虚拟阅读器指标的精度;(4)执行疾病检测和分类的机器学习工具
以及数据增强,所有这些对于 VIT 都至关重要 (5) 超越医学成像的资源;
VIT 的应用包括临床评估和教育,以及 (6) 基准数据库和
促进开放科学文化的绩效水平,使技术评估变得公平和
TRD3 不仅能够对临床成像科学和实践产生重大影响。
评估成像技术的有效方法,同时也刺激了数据科学的新发展
虚拟阅读器将资源与大量临床和模拟图像数据相结合。
该中心将提供必要的框架,以在 CT 成像及其他领域实现 VIT。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOSEPH Y LO其他文献
JOSEPH Y LO的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOSEPH Y LO', 18)}}的其他基金
Computer-Aided Triage of Body CT Scans with Deep Learning
利用深度学习对身体 CT 扫描进行计算机辅助分类
- 批准号:
10585553 - 财政年份:2023
- 资助金额:
$ 28.3万 - 项目类别:
Tomosynthesis for Improved Breast Cancer Detection
用于改进乳腺癌检测的断层合成
- 批准号:
7096059 - 财政年份:2006
- 资助金额:
$ 28.3万 - 项目类别:
Tomosynthesis for Improved Breast Cancer Detection
用于改进乳腺癌检测的断层合成
- 批准号:
7390660 - 财政年份:2006
- 资助金额:
$ 28.3万 - 项目类别:
Tomosynthesis for Improved Breast Cancer Detection
用于改进乳腺癌检测的断层合成
- 批准号:
7591041 - 财政年份:2006
- 资助金额:
$ 28.3万 - 项目类别:
Tomosynthesis for Improved Breast Cancer Detection
用于改进乳腺癌检测的断层合成
- 批准号:
7248669 - 财政年份:2006
- 资助金额:
$ 28.3万 - 项目类别:
Predicting breast cancer with ultrasound and mammography
通过超声波和乳房X光检查预测乳腺癌
- 批准号:
6417326 - 财政年份:2002
- 资助金额:
$ 28.3万 - 项目类别:
Predicting breast cancer with ultrasound and mammography
通过超声波和乳房X光检查预测乳腺癌
- 批准号:
6620433 - 财政年份:2002
- 资助金额:
$ 28.3万 - 项目类别:
Improved diagnosis of breast microcalcification clusters
改进乳腺微钙化簇的诊断
- 批准号:
6515215 - 财政年份:2001
- 资助金额:
$ 28.3万 - 项目类别:
相似国自然基金
采用复合防护材料的水下多介质耦合作用下重力坝抗爆机理研究
- 批准号:51779168
- 批准年份:2017
- 资助金额:59.0 万元
- 项目类别:面上项目
采用数值计算求解一类半代数系统全部整数解
- 批准号:11671377
- 批准年份:2016
- 资助金额:48.0 万元
- 项目类别:面上项目
采用pinball loss的MEE算法研究
- 批准号:11401247
- 批准年份:2014
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
采用路径算法和管网简化的城市内涝近实时模拟
- 批准号:41301419
- 批准年份:2013
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
采用ε近似算法的盲信道均衡
- 批准号:60172058
- 批准年份:2001
- 资助金额:16.0 万元
- 项目类别:面上项目
相似海外基金
Move and Snooze: Adding insomnia treatment to an exercise program to improve pain outcomes in older adults with knee osteoarthritis
活动和小睡:在锻炼计划中添加失眠治疗,以改善患有膝骨关节炎的老年人的疼痛结果
- 批准号:
10797056 - 财政年份:2023
- 资助金额:
$ 28.3万 - 项目类别:
High-throughput thermodynamic and kinetic measurements for variant effects prediction in a major protein superfamily
用于预测主要蛋白质超家族变异效应的高通量热力学和动力学测量
- 批准号:
10752370 - 财政年份:2023
- 资助金额:
$ 28.3万 - 项目类别:
Bioethical, Legal, and Anthropological Study of Technologies (BLAST)
技术的生物伦理、法律和人类学研究 (BLAST)
- 批准号:
10831226 - 财政年份:2023
- 资助金额:
$ 28.3万 - 项目类别:
Discovering clinical endpoints of toxicity via graph machine learning and semantic data analysis
通过图机器学习和语义数据分析发现毒性的临床终点
- 批准号:
10745593 - 财政年份:2023
- 资助金额:
$ 28.3万 - 项目类别:
Enhanced Medication Management to Control ADRD Risk Factors Among African Americans and Latinos
加强药物管理以控制非裔美国人和拉丁裔的 ADRD 风险因素
- 批准号:
10610975 - 财政年份:2023
- 资助金额:
$ 28.3万 - 项目类别: