Molecular basis of metal acquisition by an intravacuolar pathogen
液泡内病原体获取金属的分子基础
基本信息
- 批准号:10259847
- 负责人:
- 金额:$ 69.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-09 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:BacteriaBacterial ProteinsBindingBinding ProteinsBiochemicalBiogenesisBiologyBiophysicsBiosensorCRISPR/Cas technologyCell LineCellsCommunicable DiseasesConsensusCoupledCryoelectron MicroscopyCrystallographyCytoplasmCytosolDataDetergentsDevelopmentDiseaseDockingElectronsEndoplasmic ReticulumEnvironmentFire - disastersFluorescenceGeneticGoalsGrowthHumanImmuneIndividualIronLegionellaLegionella pneumophilaLibrariesLinkMaintenanceMeasuresMembraneMetalsModelingMolecularMolecular ConformationMutationNutrientNutritionalNutritional ImmunityOrganellesPathway interactionsPhospholipidsPlayProcessPropertyProteinsReporterResearch PersonnelResourcesRoleRouteSequence AnalysisSideSiderophoresSourceSpin LabelsStarvationStructureSystemTestingTransition ElementsU937 CellsVacuoleWorkX-Ray Crystallographybasebiophysical analysiscell typedensitydimerexperimental studyextracellularinnate immune functionmacrophagemicrobialmicroorganismmutantnanodiskpathogenpathogenic bacteriapreventpromoterprotein transportreconstitutionreconstructionrecruitresponsesensorvesicle transport
项目摘要
Pathogenic bacteria must acquire iron from the host to cause disease. The host, in turn, interferes with
acquisition of this essential nutrient because free iron is not readily available. The details of this interplay
between the host and the pathogen competing for limiting iron have been largely devoted to understanding
the biology of extracellular pathogens or pathogens growing freely within the host cell cytosol. In contrast,
the dynamics of iron competition is poorly understood for intravacuolar pathogens. Prior to this work, few
strategies have been forwarded for how iron is transported into the pathogen replication vacuole and the
source of the intracellular store of iron accessed by these pathogens is unknown. Similarly, how the host
cell limits iron availability to these pathogens is quite limited. This application proposes to attack this
problem by taking advantage of recent data on the biology of metal acquisition by the Legionella
pneumophila MavN protein, the development of a pure system that allows reconstruction of transition metal
transport, and technological advances that allow the analysis of random mutations in any cell type. MavN is
the only known bacterial protein that is inserted into host membranes to facilitate iron access by pathogen
growing in a vacuole, making this a unique opportunity to study iron access.
The experiments described propose to identify the molecular details of how MavN transports transition
metals across membranes, and identify host components that modulate accessibility of iron to the protein.
Experiments are proposed using Double Electron-Electron Resonance, X-Ray crystallography and
cryoelectron microscopy to identify the critical atomic components of MavN that promote metal transit into
the Legionella-containing vacuole. To identify host components that modulate iron accessibility to MavN,
two CRISPR/Cas9 mutant hunts are proposed. Each of the mutant hunts takes advantage of an iron-
responsive fluorescent protein reporter harbored in L. pneumophila that allows the identification of human
cell mutants that are defective for allowing iron access to the bacterium, or which allow promiscuous access
to this nutrient. Using defined criteria to prioritize mutant candidates, the targets identified will be used to
determine if MavN accesses the host cytosolic labile iron pool, acquires iron from organelles, or directly
interfaces with a host protein to allow iron access. In the process, the details of how iron is routed from the
host into the bacterium-containing compartment will be uncovered, and host proteins that interfere with this
process will be identified. By understanding this process, it is hoped that control of metal access can be
linked to host innate immune function, with the goal of understanding how to interfere with iron acquisition
and restrict intravacuolar pathogen replication.
致病菌必须从宿主那里获取铁才能引起疾病。反过来,主机也会干扰
由于游离铁不易获得,因此无法获得这种必需营养素。这种相互作用的细节
宿主和病原体之间竞争限制铁的关系主要致力于了解
细胞外病原体或在宿主细胞胞浆内自由生长的病原体的生物学。相比之下,
对于液泡内病原体的铁竞争动态知之甚少。在这项工作之前,很少
已经提出了关于铁如何转运到病原体复制液泡和
这些病原体所获取的细胞内铁储存的来源尚不清楚。同样,楼主如何
细胞限制铁对这些病原体的可用性相当有限。该应用程序建议攻击此
通过利用军团菌获取金属的生物学最新数据来解决这个问题
嗜肺军团菌 MavN 蛋白,开发出允许重建过渡金属的纯系统
运输和技术进步允许分析任何细胞类型的随机突变。 MavN 是
唯一已知的插入宿主膜以促进病原体接触铁的细菌蛋白
在液泡中生长,这使得这是研究铁的获取的独特机会。
所描述的实验旨在确定 MavN 如何传输跃迁的分子细节
跨膜金属,并识别调节铁与蛋白质的可及性的宿主成分。
实验建议使用双电子共振、X 射线晶体学和
冷冻电子显微镜可识别 MavN 中促进金属转运的关键原子成分
含有军团菌的液泡。为了确定调节 MavN 铁可及性的宿主成分,
提出了两种 CRISPR/Cas9 突变体搜寻方案。每一次突变体狩猎都利用了铁-
嗜肺军团菌中含有的响应性荧光蛋白报告基因,可用于识别人类
细胞突变体有缺陷,无法让铁进入细菌,或者允许混杂进入
对于这种营养物质。使用定义的标准对突变候选者进行优先排序,确定的目标将用于
确定 MavN 是否访问宿主细胞质不稳定铁库、从细胞器获取铁,或直接获取铁
与宿主蛋白相互作用以允许铁进入。在此过程中,铁如何从
进入含细菌室的宿主将被暴露,并且干扰这种情况的宿主蛋白
过程将被识别。通过了解这个过程,希望能够控制金属进入
与宿主先天免疫功能相关,目的是了解如何干扰铁的获取
并限制液泡内病原体的复制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ralph R. Isberg其他文献
Le mécanisme moléculaire de l'invasion cellulaire par Yersinia pseudotuberculosis par interaction de l'invasine et de l'intégrine
假结核耶尔森菌细胞侵袭分子机制与侵袭与整合相互作用
- DOI:
10.1016/s0924-4204(97)84731-2 - 发表时间:
1997 - 期刊:
- 影响因子:0
- 作者:
P. Dersch;Ralph R. Isberg - 通讯作者:
Ralph R. Isberg
Ralph R. Isberg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ralph R. Isberg', 18)}}的其他基金
The interface between L. pneumophila manipulation of host endoplasmic reticulum and innate immune subterfuge
嗜肺军团菌操纵宿主内质网与先天免疫诡计之间的界面
- 批准号:
10331320 - 财政年份:2020
- 资助金额:
$ 69.48万 - 项目类别:
Molecular basis of metal acquisition by an intravacuolar pathogen
液泡内病原体获取金属的分子基础
- 批准号:
10033724 - 财政年份:2020
- 资助金额:
$ 69.48万 - 项目类别:
Molecular basis of metal acquisition by an intravacuolar pathogen
液泡内病原体获取金属的分子基础
- 批准号:
10444928 - 财政年份:2020
- 资助金额:
$ 69.48万 - 项目类别:
Molecular basis of metal acquisition by an intravacuolar pathogen
液泡内病原体获取金属的分子基础
- 批准号:
10646234 - 财政年份:2020
- 资助金额:
$ 69.48万 - 项目类别:
The interface between L. pneumophila manipulation of host endoplasmic reticulum and innate immune subterfuge
嗜肺军团菌操纵宿主内质网与先天免疫诡计之间的界面
- 批准号:
10554261 - 财政年份:2020
- 资助金额:
$ 69.48万 - 项目类别:
Engineering of Complex Infectious Loci in Culture
培养中复杂感染位点的工程
- 批准号:
10092952 - 财政年份:2020
- 资助金额:
$ 69.48万 - 项目类别:
相似国自然基金
DEAD-box蛋白相分离调控细菌冷激应答的机制研究
- 批准号:32301085
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
LRR1激酶-AHL17蛋白磷酸化-下游基因模块介导木薯细菌性枯萎病抗性的分子机制研究
- 批准号:32360462
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
特异抑制病原细菌毒性蛋白分泌的植物天然产物FAD的分子机制研究
- 批准号:32370322
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
靶向铜绿假单胞菌FpvA蛋白的铁载体偶联抗生素克服细菌耐药性及作用机制研究
- 批准号:82304313
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
新型细菌源角蛋白酶KerJY-23的高效分泌表达、结构解析及分子催化机制研究
- 批准号:32360230
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Molecular basis of glycan recognition by T and B cells
T 和 B 细胞识别聚糖的分子基础
- 批准号:
10549648 - 财政年份:2023
- 资助金额:
$ 69.48万 - 项目类别:
Disrupting Dogma: Investigating LPS Biosynthesis Inhibition as an Alternative Mechanism of Action of Aminoglycoside Antibiotics
颠覆教条:研究 LPS 生物合成抑制作为氨基糖苷类抗生素的替代作用机制
- 批准号:
10653587 - 财政年份:2023
- 资助金额:
$ 69.48万 - 项目类别:
Targeting NuoD for the treatment of H. pylori
靶向 NuoD 治疗幽门螺杆菌
- 批准号:
10659783 - 财政年份:2023
- 资助金额:
$ 69.48万 - 项目类别:
Gatekeeping glycan metabolism in the human gut microbiome
人类肠道微生物组中的聚糖代谢把关
- 批准号:
10737225 - 财政年份:2023
- 资助金额:
$ 69.48万 - 项目类别: