Center for Machine Learning in Urology-Scientific Project

泌尿科机器学习中心科学项目

基本信息

  • 批准号:
    10260579
  • 负责人:
  • 金额:
    $ 20.59万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-15 至 2023-06-30
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY Kidney stones are characterized by the episodic occurrence of debilitating stone events, which lead to painful passage, emergent visits, and surgery. Proper selection of medical and surgical treatments depends on accurate assessment of stone characteristics, including size and location. Current methods for quantifying these characteristics depend on manual measurement by humans, which introduces unnecessary variation, is laborious, and makes analyzing the large number of imaging studies performed for clinical trials very difficult. Existing automated measurements are proprietary, only segment (partition) the stone from the surrounding structures without considering other clinically important features such as hydronephrosis, and are slow. A critical barrier to effectively implementing individualized therapies that decrease the burden of nephrolithiasis is the lack of automated analyses of diagnostic imaging that could accurately measure stone and kidney characteristics, and predict, in real time, an individual’s risk of stone events, such as spontaneous stone passage. In this Research Project, the Children’s Hospital of Philadelphia (CHOP) and the University of Pennsylvania (Penn) Center for Machine Learning in Urology (CMLU) forges a collaboration among experts in machine learning of diagnostic imaging, clinical epidemiology, and benign urologic disease. We build upon our recent discoveries that machine learning (particularly deep learning) of diagnostic images accurately, reliably, and rapidly predicts disease risk strata and outcomes. This project uses machine learning of CT to automate measurement of conventional characteristics of stones (e.g. size, location, and shape) and renal anatomy (e.g. hydronephrosis, ureteral dilation). We then apply this method to predict spontaneous passage of ureteral stones for individuals across the lifespan. In doing so, the proposed studies will develop clinically useful open-access prediction tools that will transform the standard of quantifying urinary stones and, in a fully automated way, accurately, reliably, and rapidly identify patients with ureteral stones most likely to benefit from early surgical intervention. In Aim 1, we will use deep learning to automatically segment and measure conventional features of urinary stones (e.g. size, density) and adjacent renal and ureteral anatomy (e.g. degree of hydronephrosis) in CT images of 2,000 children and adults evaluated at CHOP and Penn, respectively. In Aim 2, we will use deep learning to extract informative features from CT images that predict ureteral stone passage for 723 unique children and adults. The features include conventional features, engineered features, and deep-learning features that may neither be appreciated by nor be able to be measured by humans. These results would transform clinical care and research and provide insights into those who would be most likely to benefit from early elective surgery to remove stones to prevent future pain and emergent visits.
项目摘要 肾结石的特征是虚弱的石头事件发生,这导致了痛苦 通过,紧急访问和手术的适当选择。 评估石材特征,包括尺寸和位置。 特征取决于引入不必要变化的人类的手动测量,是 费力,并使得分析对临床试验进行的大量成像研究非常困难。 现有的自动测量是专有的,只有细分市场(分区)周围的石头 没有考虑其他重要特征的结构,例如肾积水,并且很慢 有效实施治疗的障碍,认为某种肾时期负担是缺乏的 对诊断成像的自动分析,这些成像可以卷曲测量石头和肾脏特征, 并实时预测个人发生石材事件的风险,例如自发的石头通道。 在这个研究项目中,费城儿童医院(CHOP)和宾夕法尼亚大学 (PENN)泌尿外科机器学习(CMLU)的中央 学习诊断成像,临床流行病学和良性泌尿科疾病。 发现机器学习(尤其是深度学习)准确,可靠,并且 迅速预测疾病的风险层和结果。 测量石头的常规特征(例如大小,位置和形状)和肾解剖学(例如) 肾结通,输尿管扩张)。 对于整个救生员的人,支撑研究将开发临床上有用 预测工具可以改变量化尿液结石的标准,并以完全自动化的方式, 准确,可靠,迅速识别有输尿管石的患者,最有可能受益于早期手术 在AIM 1中的间隔,我们将使用深度学习来自动细分并测量转换功能 尿石(例如尺寸,密度)和相邻的肾脏和输尿管造口(例如肾结通程度) 2,000名儿童的CT图像,并在Chop and Penn,尊敬的人。 学习从CT图像中提取信息的功能,这些特征可预测723独特的输尿管石通道 儿童和成人包括传统功能,发动机功能和深度学习功能 这些结果既不是由人类衡量的。 临床护理和研究,并提供有关我最有可能从早期选举中受益的见解 手术以去除石头,以防止将来的疼痛和紧急访问。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yong Fan其他文献

Yong Fan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yong Fan', 18)}}的其他基金

Personalized Functional Network Modeling to Characterize and Predict Psychopathology in Youth
用于表征和预测青少年精神病理学的个性化功能网络模型
  • 批准号:
    10304463
  • 财政年份:
    2021
  • 资助金额:
    $ 20.59万
  • 项目类别:
Fast and robust deep learning tools for analysis of neuroimaging data of Alzheimer's disease
快速、强大的深度学习工具,用于分析阿尔茨海默病的神经影像数据
  • 批准号:
    10573337
  • 财政年份:
    2021
  • 资助金额:
    $ 20.59万
  • 项目类别:
Personalized Functional Network Modeling to Characterize and Predict Psychopathology in Youth
用于表征和预测青少年精神病理学的个性化功能网络模型
  • 批准号:
    10630919
  • 财政年份:
    2021
  • 资助金额:
    $ 20.59万
  • 项目类别:
Fast and robust deep learning tools for analysis of neuroimaging data of Alzheimer's disease
快速、强大的深度学习工具,用于分析阿尔茨海默病的神经影像数据
  • 批准号:
    10371213
  • 财政年份:
    2021
  • 资助金额:
    $ 20.59万
  • 项目类别:
Personalized Functional Network Modeling to Characterize and Predict Psychopathology in Youth
用于表征和预测青少年精神病理学的个性化功能网络模型
  • 批准号:
    10460612
  • 财政年份:
    2021
  • 资助金额:
    $ 20.59万
  • 项目类别:
Individualized Closed Loop TMS for Working Memory Enhancement
用于增强工作记忆的个性化闭环 TMS
  • 批准号:
    10632147
  • 财政年份:
    2019
  • 资助金额:
    $ 20.59万
  • 项目类别:
Individualized Closed Loop TMS for Working Memory Enhancement
用于增强工作记忆的个性化闭环 TMS
  • 批准号:
    10417107
  • 财政年份:
    2019
  • 资助金额:
    $ 20.59万
  • 项目类别:
Individualized Closed Loop TMS for Working Memory Enhancement
用于增强工作记忆的个性化闭环 TMS
  • 批准号:
    10204952
  • 财政年份:
    2019
  • 资助金额:
    $ 20.59万
  • 项目类别:
Individualized Closed Loop TMS for Working Memory Enhancement
用于增强工作记忆的个性化闭环 TMS
  • 批准号:
    10006111
  • 财政年份:
    2019
  • 资助金额:
    $ 20.59万
  • 项目类别:
Computer Aided Early Detection and Diagnosis of Alzheimer's Disease
计算机辅助阿尔茨海默病的早期检测和诊断
  • 批准号:
    7707231
  • 财政年份:
    2009
  • 资助金额:
    $ 20.59万
  • 项目类别:

相似国自然基金

HTRA1介导CTRP5调控脂代谢通路在年龄相关性黄斑变性中的致病机制研究
  • 批准号:
    82301231
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
PLAAT3降低介导线粒体降解异常在年龄相关性白内障发病中的作用及机制
  • 批准号:
    82301190
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
跨尺度年龄自适应儿童头部模型构建与弥漫性轴索损伤行为及表征研究
  • 批准号:
    52375281
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
ALKBH5通过SHP-1调控视网膜色素上皮细胞铁死亡在年龄相关性黄斑变性中的作用机制研究
  • 批准号:
    82301213
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
视网膜色素上皮细胞中NAD+水解酶SARM1调控自噬溶酶体途径参与年龄相关性黄斑变性的机制研究
  • 批准号:
    82301214
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

The Influence of Lifetime Occupational Experience on Cognitive Trajectories Among Mexican Older Adults
终生职业经历对墨西哥老年人认知轨迹的影响
  • 批准号:
    10748606
  • 财政年份:
    2024
  • 资助金额:
    $ 20.59万
  • 项目类别:
The Proactive and Reactive Neuromechanics of Instability in Aging and Dementia with Lewy Bodies
衰老和路易体痴呆中不稳定的主动和反应神经力学
  • 批准号:
    10749539
  • 财政年份:
    2024
  • 资助金额:
    $ 20.59万
  • 项目类别:
Individual Predoctoral Fellowship
个人博士前奖学金
  • 批准号:
    10752036
  • 财政年份:
    2024
  • 资助金额:
    $ 20.59万
  • 项目类别:
Core B: B-HEARD Core
核心 B:B-HEARD 核心
  • 批准号:
    10555691
  • 财政年份:
    2023
  • 资助金额:
    $ 20.59万
  • 项目类别:
Sustained eIF5A hypusination at the core of brain metabolic dysfunction in TDP-43 proteinopathies
持续的 eIF5A 抑制是 TDP-43 蛋白病脑代谢功能障碍的核心
  • 批准号:
    10557547
  • 财政年份:
    2023
  • 资助金额:
    $ 20.59万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了