Analytical Chemistry
分析化学
基本信息
- 批准号:10261245
- 负责人:
- 金额:$ 209.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAdoptedAgingAnalytical ChemistryAntibody-drug conjugatesBar CodesBinding ProteinsBiological AssayBiologyCell CountCellsChemicalsChemistryChromatographyComputer AssistedComputer softwareComputers and Advanced InstrumentationCustomDataData Storage and RetrievalDatabasesDetectionDevelopmentDiseaseElectrodesEligibility DeterminationEquipmentEquipment and supply inventoriesExcisionExtramural ActivitiesFluorescenceFreeze DryingGoalsHigh Performance ComputingHourIndustry StandardInformaticsIonsLaboratoriesLipidsLiquid substanceManagement Information SystemsMass FragmentographyMass Spectrum AnalysisMethodsMinorMissionModalityMolecular ConformationNMR SpectroscopyNoiseNuclear Magnetic ResonanceOptical RotationPeptidesPerformancePhasePreparationProcessProductionProductivityProtein AnalysisProteinsProteomicsProtocols documentationResearchResolutionResourcesRobotSamplingSavingsSignal TransductionSolventsSpectrometrySystemTechniquesTechnologyTestingTherapeuticTimeTranslational ResearchTubeUnited States National Institutes of HealthVial deviceVibrational Circular DichroismWorkanalytical methodapplication programming interfaceautomated analysisbasebiomarker discoverycluster computingcostdata managementdesigndetectordrug developmentdrug discoveryelectric fieldexperimental studyhigh throughput screeningimprovedinnovationinstrumentinstrumentationion mobilityion sourcelight scatteringliquid chromatography mass spectrometrymass spectrometermethod developmentmilligramnew technologynovelpre-clinicalprogramsprotein protein interactionscale upscreeningsmall moleculesoftware developmentstereochemistrytherapeutic developmentthree dimensional structuretime of flight mass spectrometryultravioletusability
项目摘要
The Analytical Chemistry team has continued to perform the core responsibility of purifying samples with material in the range of milligrams to grams. Major and minor components (< 0.1 percent) have been isolated for additional testing and characterization. The teams automated sample processing protocol allows for dispensing into 1D barcoded vials, Matrix 2D barcoded tubes and/or 96-well plates for efficient tracking, storing, and testing. The entire process from receiving the sample to final plating is completed within one week. While the group uses a variety of liquid chromatographs to determine identity and purity, single quadrupole liquid chromatography/mass spectrometry instrumentation is utilized for high-throughput automated analysis. Due to the wide variety of analytes tested, the teams range of analytical detectors includes ultraviolet (UV), mass spectrometry (MS; positive and negative mode), and evaporative light scattering detector and fluorescence (ELSD). Time-of-flight mass spectrometry (TOF-MS) is employed to achieve formula confirmation and identity determination of unknowns.
The chemical and enantiomeric purity of chiral compounds is routinely determined within the groups full-scale chiral laboratory. Methods development with the chiral chromatography screening protocol involves the utilization of various chiral stationary phases in conjunction with multiple mobile phase conditions. The use of an inline chiral detector allows for the determination of relative optical rotation. Sample purification on a scale of up to hundreds of milligrams is possible. We have expanded our chiral purification capabilities through the addition of two new semi-preparative chiral columns. These columns contain chiral stationary phases unique from our other columns enabling a wider range of separation methods and conditions. Our vibrational circular dichroism (VCD) spectrometry platform continues to be developed to determine the absolute stereochemistry for the ever increasing number of chiral compounds being synthesized at NCATS. Progress is being made in the deployment of a conformational analysis software onto the NCATS high-performance computing (HPC) cluster. This will greatly reduce the computing time needed to generate predicted VCD spectra for comparison with experimental results. Additionally, this software can be applied to the computer-assisted 3D structure elucidation (CASE-3D) platform we are developing, which will utilize isotropic and anisotropic NMR data.
The expansion of DPIs focus beyond small molecules to alternate therapeutic modalities necessitates constant advancement in our NMR and MS analytical capabilities through the acquisition and incorporation of more advanced instrumentation and techniques in order to detect, identify, quantify, and validate these new chemical entities. For NMR spectroscopy, we continued the implementation of routine methods for the analysis of peptides. Ligand-protein binding experiments were utilized to investigate protein-protein interactions (PPIs) for various disease states to aid in therapeutic development. Explorations into the use of Mestrelabs Stereofitter software were initiated to determine the 3D conformation of chiral small molecules. For mass spectrometry, we acquired a field asymmetric ion mobility spectrometry (FAIMS) Pro module for installation on our Thermo Fisher Orbitrap Fusion Lumos MS system, which will be extremely beneficial to proteomics analysis. The FAIMS Pro interface is an ion separation technique based on differences in an ions mobility between two electrodes at varying electric fields. This technique lets selected ions pass from the ion source to the mass spectrometer improved selectivity (greater signal-to-noise ratio), improved detection limits, and increased throughput. These improvements not only minimize the cell counts require per sample but will enable the discovery of low quantity proteins within the cells. Another advancement to our proteomics program was the development of a universal 384-well proteomic sample preparation platform for high-throughput screening and biomarker discovery. The workflow utilizes an Agilent Bravo liquid handler to automate the majority of process steps leading to greater efficiency, higher throughput, and reduced costs. The proteomics sample preparation platform was so successful that we are in the process of acquiring another Agilent Bravo system to meet research demands. Our work on antibody-drug conjugate (ADC) screening project continues to expand and we are currently purchasing an high performance mass spectrometer that is designed for intact protein analysis in the native state to accommodate these growing needs. We completed the installation of a second Agilent RapidFire-QQQ high-throughput mass spectrometry system. This allows us to utilize one RapidFire system to methods development and small-scale screens (<10,000 samples) while the other system is a full production unit dedicated to large-scale biological assays.
The Sample Management and Resource Tracking (SMART) laboratory information management system (LIMS), in conjunction with our centralized purification platform is utilized at DPI for sample submission, compound purification, compound processing, sample registration, compound inventory, sample tracking, data retrieval, and data management. This semi-automated workflow is continuously being modified and expanded based on changing scientific needs. We are in the process of replacing our aging Sirius MultiTasker liquid handling system with a more advanced Sirius OmniTasker platform. In addition to greater automated capabilities, the OmniTasker was designed to hold two process batches of samples compared to the current single batch improving efficiency and productivity. Furthermore, we have acquired a Sirius MicroTasker customized for preparing samples within NMR tubes that will provide a time savings to the medicinal chemists. In association with the A Specialized Platform for Innovative Research Exploration (ASPIRE) program, Analytical Chemistry has continued development toward a fully automated purification system. We have been focused on evaluating various evaporative technologies for the removal of solvent in less time than the 20 hours currently required for lyophilization. Additionally, we have acquired a Biosero automated mobile robot to transfer sample racks and tubes between physically separated instruments and equipment within the lab that are part of an automated workflow. The DPI initiative of supplanting our current outdated registration system with GSRS, a chemical registration and management software developed at NCATS and currently utilized by the FDA, spearheaded by Informatics, Analytical Chemistry, and Compound Management has made significant progress. We have also implemented the processes and protocols we developed for the purification and management of DEA controlled substances as part of NCATSs involvement in the NIH HEAL Initiative
The NCATS Scientific Ordering System (SOS), the primary system for the requisition, organization, and management of all orders at DPI, has seen some significant upgrades and increased functionality. Continued expansion of functionality, as well as development of direct interfacing with POTS, will allow SOS to expand its usage to all NCATS to better manage spending on a project-by-project basis Direct connection of SOS with POTS through an application programming interface (API) improves efficiency and expediency of order submission for both order managers and purchasing agents. Development and implementation of a controlled substance database and resolver allows for tracking of DEA controlled substances through the SOS ordering and delivery process. Many of the added features were to improve usability and facilitate greater ease of ordering, which include bu
分析化学团队继续履行纯化毫克至克范围内材料样品的核心职责。主要和次要成分(< 0.1%)已被隔离以进行额外的测试和表征。该团队的自动化样品处理协议允许分配到 1D 条形码小瓶、Matrix 2D 条形码管和/或 96 孔板中,以进行高效跟踪、存储和测试。从收到样品到最终电镀的整个过程在一周内完成。虽然该小组使用各种液相色谱仪来确定身份和纯度,但单四极杆液相色谱/质谱仪器用于高通量自动分析。由于测试的分析物种类繁多,该团队的分析检测器范围包括紫外 (UV)、质谱(MS;正负模式)以及蒸发光散射检测器和荧光 (ELSD)。采用飞行时间质谱(TOF-MS)来实现化学式确认和未知物的身份确定。
手性化合物的化学和对映体纯度通常在集团的全规模手性实验室内测定。手性色谱筛选方案的方法开发涉及各种手性固定相与多种流动相条件的结合。使用在线手性检测器可以确定相对旋光度。样品纯化规模可达数百毫克。我们通过添加两个新的半制备手性柱扩大了我们的手性纯化能力。这些色谱柱包含与我们其他色谱柱不同的手性固定相,可实现更广泛的分离方法和条件。我们不断开发振动圆二色性 (VCD) 光谱分析平台,以确定 NCATS 合成的越来越多的手性化合物的绝对立体化学。在 NCATS 高性能计算 (HPC) 集群上部署构象分析软件方面正在取得进展。这将大大减少生成预测 VCD 光谱以与实验结果进行比较所需的计算时间。此外,该软件还可应用于我们正在开发的计算机辅助 3D 结构解析 (CASE-3D) 平台,该平台将利用各向同性和各向异性 NMR 数据。
DPI 的重点从小分子扩展到替代治疗方式,需要通过获取和采用更先进的仪器和技术来不断提高我们的 NMR 和 MS 分析能力,以便检测、识别、量化和验证这些新的化学实体。对于核磁共振波谱,我们继续实施肽分析的常规方法。利用配体-蛋白质结合实验来研究各种疾病状态的蛋白质-蛋白质相互作用(PPI),以帮助治疗开发。开始探索使用 Mestrelabs Stereofitter 软件来确定手性小分子的 3D 构象。对于质谱分析,我们购买了场不对称离子迁移谱 (FAIMS) Pro 模块,安装在 Thermo Fisher Orbitrap Fusion Lumos MS 系统上,这对于蛋白质组学分析极为有利。 FAIMS Pro 接口是一种离子分离技术,基于不同电场下两个电极之间离子迁移率的差异。该技术使选定的离子从离子源传递到质谱仪,从而提高选择性(更高的信噪比)、提高检测限并提高通量。这些改进不仅最大限度地减少了每个样品所需的细胞计数,而且能够发现细胞内的低含量蛋白质。 我们蛋白质组学项目的另一项进步是开发了通用 384 孔蛋白质组学样品制备平台,用于高通量筛选和生物标志物发现。该工作流程利用 Agilent Bravo 液体处理器来自动执行大部分工艺步骤,从而提高效率、提高通量并降低成本。蛋白质组学样品制备平台非常成功,我们正在购买另一台 Agilent Bravo 系统来满足研究需求。我们在抗体药物偶联物 (ADC) 筛选项目方面的工作不断扩大,目前我们正在购买一台高性能质谱仪,该质谱仪专为天然状态下的完整蛋白质分析而设计,以满足这些不断增长的需求。我们完成了第二套 Agilent RapidFire-QQQ 高通量质谱系统的安装。这使我们能够利用一个 RapidFire 系统进行方法开发和小规模筛选(<10,000 个样本),而另一个系统是专用于大规模生物测定的完整生产单元。
样品管理和资源跟踪 (SMART) 实验室信息管理系统 (LIMS) 与我们的集中纯化平台相结合,在 DPI 中用于样品提交、化合物纯化、化合物处理、样品注册、化合物库存、样品跟踪、数据检索、和数据管理。这种半自动化工作流程根据不断变化的科学需求不断进行修改和扩展。我们正在用更先进的 Sirius OmniTasker 平台替换老化的 Sirius MultiTasker 液体处理系统。除了更强大的自动化功能外,OmniTasker 还设计用于容纳两批样品,与当前的单批次样品相比,提高了效率和生产率。此外,我们还购买了专门用于在 NMR 管内制备样品的 Sirius MicroTasker,这将为药物化学家节省时间。结合创新研究探索专业平台 (ASPIRE) 计划,分析化学不断开发全自动纯化系统。我们一直致力于评估各种蒸发技术,以在比目前冻干所需的 20 小时更短的时间内去除溶剂。此外,我们还购买了一台 Biosero 自动化移动机器人,用于在实验室内物理分离的仪器和设备之间转移样品架和试管,这是自动化工作流程的一部分。 DPI 计划用 GSRS 取代我们当前过时的注册系统,GSRS 是 NCATS 开发的化学品注册和管理软件,目前由 FDA 使用,由信息学、分析化学和化合物管理牵头,已取得重大进展。作为 NCATS 参与 NIH HEAL Initiative 的一部分,我们还实施了为 DEA 受控物质的纯化和管理而开发的流程和方案
NCATS 科学订购系统 (SOS) 是 DPI 所有订单的申请、组织和管理的主要系统,已经进行了一些重大升级并增加了功能。功能的持续扩展以及与 POTS 直接接口的开发将使 SOS 能够将其用途扩展到所有 NCATS,以便更好地管理逐个项目的支出 通过应用程序编程接口 (API) 将 SOS 与 POTS 直接连接) 提高了订单经理和采购代理提交订单的效率和便利性。受控物质数据库和解析器的开发和实施允许通过 SOS 订购和交付流程跟踪 DEA 受控物质。许多添加的功能是为了提高可用性并促进更轻松的订购,其中包括
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Arthur LeClair其他文献
Christopher Arthur LeClair的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher Arthur LeClair', 18)}}的其他基金
相似国自然基金
采用积分投影模型解析克隆生长对加拿大一枝黄花种群动态的影响
- 批准号:32301322
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
山丘区农户生计分化对水保措施采用的影响及其调控对策
- 批准号:42377321
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
政策激励、信息传递与农户屋顶光伏技术采用提升机制研究
- 批准号:72304103
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
金属有机骨架材料在环境VOCs处理过程中采用原位电子顺磁共振自旋探针检测方法的研究
- 批准号:22376147
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Commercial translation of high-density carbon fiber electrode arrays for multi-modal analysis of neural microcircuits
用于神经微电路多模态分析的高密度碳纤维电极阵列的商业转化
- 批准号:
10761217 - 财政年份:2023
- 资助金额:
$ 209.38万 - 项目类别:
Robust Precision Mapping of Cortical and Subcortical Brain Metabolic Signatures in AD
AD 中大脑皮层和皮层下代谢特征的稳健精确绘图
- 批准号:
10746348 - 财政年份:2023
- 资助金额:
$ 209.38万 - 项目类别:
4D Flow MRI in Assessment of True Severe Low-Gradient Aortic Stenosis
4D Flow MRI 评估真正的严重低梯度主动脉瓣狭窄
- 批准号:
10735953 - 财政年份:2023
- 资助金额:
$ 209.38万 - 项目类别:
SCH: Novel and Interpretable Statistical Learning for Brain Images in AD/ADRDs
SCH:针对 AD/ADRD 大脑图像的新颖且可解释的统计学习
- 批准号:
10816764 - 财政年份:2023
- 资助金额:
$ 209.38万 - 项目类别: