Molecular and evolutionary characterization of male recombination and its reversal in the D. nasuta species subgroup
D. nasuta 物种亚群雄性重组及其逆转的分子和进化特征
基本信息
- 批准号:10251849
- 负责人:
- 金额:$ 9.22万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-02 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAllelesAneuploidyBehaviorBiochemicalCRISPR/Cas technologyChromosome SegregationChromosomesCoupledDiseaseDissectionDown SyndromeDrosophila genusElectron MicroscopyEngineeringEnsureEvaluationEvolutionFemaleFilamentGTP-Binding Protein alpha Subunits, GsGene Expression ProfileGenesGeneticGenetic MaterialsGenetic PolymorphismGenetic RecombinationGenetic VariationGenomeGenome ScanHaplotypesHomologous GeneHumanHybridsImmunofluorescence ImmunologicImmunoprecipitationIndividualMammalsMapsMass Spectrum AnalysisMeiosisMeiotic RecombinationMicroscopyModelingModificationMolecularMutationNatural SelectionsOrganismOvaryPathway interactionsPhenotypePhylogenetic AnalysisProcessProtein CProteinsReagentRecombinantsResolutionRibosomesScanningSchemeSex ChromosomesSex RatioSisterSonSourceSpontaneous abortionStructureSubgroupSynaptonemal ComplexTertiary Protein StructureTestingTestisTransgenic OrganismsY Chromosomebasecausal variantchromosome fusioncostdimorphismfitnessflygenome sequencinggenomic toolsinsightinterestmalenoveloffspringpressuresample fixationsexsexual dimorphismtranscriptometransmission processwhole genome
项目摘要
PROJECT SUMMARY/ABSTRACT
Meiotic recombination is the exchange of genetic material between homologous chromosomes and is universally
found in sexually reproducing organisms. By creating novel allelic combinations through chromosomal
crossovers, meiotic recombination promotes genetic diversity and the efficacy of natural selection. When
recombination is absent, like on the Y chromosome, deleterious mutations irreversibly accumulate in a process
known as degeneration. The synaptonemal complex, which is required for the formation of crossovers, tethers
homologues together and facilitates their proper disjunction in meiosis. Disruptions to to the process result in
aneuploidy, which is the leading cause of Down syndrome and spontaneous abortions. Despite its essential
functions, aspects of meiotic recombination are unexpectedly prone to change. Many genes involved are rapidly
evolving under positive selection and, similarly, recombination rate can drastically differ between closely related
species, and even between sexes. In fact, many distinct taxa, including Drosophila, lost the ability to recombine
in males altogether, a.k.a. male achiasmy. While much of the mechanistic details are well characterized
particularly in model species, it remains unclear as to why recombination is so labile.
This proposal aims to address this question by focusing on D. nasuta, which, unique among Drosophila, has
male recombination, and its sister species D. albomicans, which reverted to male achiasmy less than 100
thousand years ago. The reversal in D. albomicans occurred after fixation of two chromosomal fusions creating
a pair of young neo-sex chromosomes. I previously showed that, prior to the reversal, male recombination
produced multiple neo-Y haplotypes that now have different extent of degeneration. These two species offer an
unique opportunity to determine the genetic, evolutionary, and molecular bases underlying the transition to and
from achiasmy. I propose to identify the causal locus underlying the reversal to male achiasmy in D. albomicans,
combining genomic tools and a classical phenotype mapping scheme (Aim 1). Candidates will be confirmed via
transgenic manipulation with CRIPSR-Cas9. I will investigate the evolution of known genes involved in meiotic
recombination in these two as well as closely related species, reasoning that male recombination in D. nasuta
likely required activation of and adaptive modifications to the existing recombination machineries (Aim2). The
resulting molecular and mechanistic changes during D. nasuta male meiosis will then be characterized with high
resolution microscopy (Aim 2). Finally, I will determine the evolutionary pressure causing the reversal to male
achiasmy in D. albomicans by testing the hypothesis that male recombination incurs a fitness cost due to the
presence of the neo-Y chromosome (Aim 3). Execution of these aims will provide significant insight on the causes
and consequences underlying the dichotomy between functional conservation and lability of recombination.
项目概要/摘要
减数分裂重组是同源染色体之间遗传物质的交换,是普遍存在的
存在于有性生殖生物体中。通过染色体创建新颖的等位基因组合
交叉、减数分裂重组促进遗传多样性和自然选择的功效。什么时候
不存在重组,就像在 Y 染色体上一样,有害突变在一个过程中不可逆地积累
称为退化。联会复合体,是形成交叉、系链所必需的
同源物聚集在一起并促进它们在减数分裂中的正确分离。过程中断会导致
非整倍体,这是唐氏综合症和自然流产的主要原因。尽管它必不可少
减数分裂重组的功能和方面出乎意料地容易发生变化。许多涉及的基因迅速
在正选择下进化,同样,密切相关的重组率可能有很大差异
物种之间,甚至性别之间。事实上,许多不同的类群,包括果蝇,失去了重组的能力
全部为男性,又名男性异性。虽然许多机械细节都得到了很好的表征
特别是在模式物种中,目前尚不清楚为什么重组如此不稳定。
本提案旨在通过关注 D. nasuta 来解决这个问题,D. nasuta 在果蝇中是独一无二的,具有
雄性重组,及其姊妹种 D. albomicans,恢复雄性不对称性小于 100
千年前。 D. albomicans 的逆转发生在两条染色体融合体固定后
一对年轻的新性染色体。我之前表明,在逆转之前,雄性重组
产生了多种新Y单倍型,这些单倍型现在具有不同程度的退化。这两个物种提供了
确定过渡到和的遗传、进化和分子基础的独特机会
来自阿奇亚斯米。我建议确定 D. albomicans 中雄性失对称逆转的因果轨迹,
结合基因组工具和经典表型作图方案(目标 1)。候选人将通过以下方式确认
使用 CRIPSR-Cas9 进行转基因操作。我将研究参与减数分裂的已知基因的进化
这两个以及密切相关的物种中的重组,推断 D. nasuta 中的雄性重组
可能需要激活现有的重组机制并对其进行适应性修改(目标2)。这
D. nasuta 雄性减数分裂期间产生的分子和机制变化将具有高特征
分辨率显微镜(目标 2)。最后,我将确定导致男性逆转的进化压力
通过检验雄性重组会由于以下原因而产生适应度成本的假设:
新 Y 染色体的存在(目标 3)。这些目标的执行将提供对原因的重要洞察
以及功能保守和重组不稳定性之间二分法背后的后果。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Neo-sex chromosome evolution shapes sex-dependent asymmetrical introgression barrier.
- DOI:10.1073/pnas.2119382119
- 发表时间:2022-05-10
- 期刊:
- 影响因子:11.1
- 作者:
- 通讯作者:
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Heng Chin Kevin Wei其他文献
Heng Chin Kevin Wei的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
等位基因聚合网络模型的构建及其在叶片茸毛发育中的应用
- 批准号:32370714
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于人诱导多能干细胞技术研究突变等位基因特异性敲除治疗1型和2型长QT综合征
- 批准号:82300353
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠杆菌多粘菌素异质性耐药中phoPQ等位基因差异介导不同亚群共存的机制研究
- 批准号:82302575
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ACR11A不同等位基因调控番茄低温胁迫的机理解析
- 批准号:32302535
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
玉米穗行数QTL克隆及优异等位基因型鉴定
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
Identification of genetic collaborators in cancer with a brca2-mutant zebrafish model
利用 brca2 突变斑马鱼模型鉴定癌症的遗传合作者
- 批准号:
10409852 - 财政年份:2021
- 资助金额:
$ 9.22万 - 项目类别:
A comprehensive quality control testing strategy for engineered cells
工程细胞的全面质量控制测试策略
- 批准号:
10330008 - 财政年份:2021
- 资助金额:
$ 9.22万 - 项目类别:
Identifying Mechanisms of Aurora Kinase A in Centrosome Clustering Using Chemical Genetics
利用化学遗传学鉴定中心体聚类中 Aurora 激酶 A 的机制
- 批准号:
10538615 - 财政年份:2020
- 资助金额:
$ 9.22万 - 项目类别:
Identifying Mechanisms of Aurora Kinase A in Centrosome Clustering Using Chemical Genetics
利用化学遗传学鉴定中心体聚类中 Aurora 激酶 A 的机制
- 批准号:
10321536 - 财政年份:2020
- 资助金额:
$ 9.22万 - 项目类别: