A comprehensive quality control testing strategy for engineered cells
工程细胞的全面质量控制测试策略
基本信息
- 批准号:10330008
- 负责人:
- 金额:$ 35.05万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-01-15 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AddressAllelesAneuploidyBioinformaticsBiological AssayBiomedical ResearchCRISPR/Cas technologyCell TherapyCellsChromatidsChromosomesClinicalClinical EngineeringCollaborationsCollectionColorComplexContractsDNA RepairDataData SetDefectDetectionDevelopmentDiseaseDouble Strand Break RepairEngineeringExhibitsFundingG-BandingGenesGenomeGenome engineeringGenomic HybridizationsGenomicsGoalsGovernmentHealthHereditary DiseaseHumanIn Situ HybridizationIndividualInheritedKaryotypeKaryotype determination procedureKnowledgeMalignant NeoplasmsMeasurementMeasuresMedicalMethodsModelingMonitorNucleotidesOutcomePaintPatientsPediatric HospitalsPharmacologic SubstancePolyploidyPopulationProcessProviderQuality ControlResearchResolutionRiskSafetySaint Jude Children&aposs Research HospitalSamplingSister Chromatid ExchangeSiteSourceSpeedStructureSystemTechniquesTechnologyTestingTherapeuticTimeTrainingVariantWorkWritingbasecellular engineeringclinical applicationcommercial applicationcomparativedata standardsdensitydesignexperienceexperimental studyfluorophoregene therapygenome editinggenome integritygenomic datahigh resolution imagingimprovedinnovationinsertion/deletion mutationpatient safetypredictive modelingprogramsreference genomeresearch and developmentscreeningstem cellstechnological innovationtherapeutic genetherapy developmenttoolwhole genome
项目摘要
ABSTRACT
KromaTiD’s current commercial therapeutic gene editing customers have expressed the critical need for a
standard approach to screening engineered cells for quality and safety that yields a comprehensive genomic
dataset with improved resolution, localization, and speed. Directional Genomic Hybridization (dGH™) has been
developed to efficiently screen cell populations for the presence of simple, complex, and heterogenous
structural variants. In this project, A Comprehensive Quality Control Testing Strategy for Engineered Cells, by
combining five-color, whole genome dGH with the fit for purpose sequencing methods of a clinically important
genome engineering system, we propose an approach to assess, for the first time, the complete outcomes of
gene editing: successful edits, unsuccessful edits, off-target edits, sequence variants, structural variants, and
gross genome integrity. Furthermore, we propose to develop a standardized data specification integrating the
data from these methods into a regulatory ready data package.
dGH is an in-situ hybridization technique utilizes high-density chromatid paints to directly interrogate the
structure of a genome in a single cell without bioinformatic interpretation, providing a complete toolset for
hypothesis-free, single-cell measurement of SVs at edit sites, per chromosome, and across the whole genome.
For companies developing therapies based on gene editing and other cell engineering approaches,
understanding editing systems and mis-repair of DSBs are critical for patient safety and regulatory approval.
Currently, batches of edited cells are screened for edit-site errors by sequencing. Because DSBs do not all
occur at the edit site, SVs in batches of edited cells exhibit a complex, heterogenous mixture of edit-site and
random breakpoints. G-banding can be used to screen for gross genome defects but cannot detect small or
complex structural variants. dGH assays detect structural variation from a reference genome without target
information, resolve SVs of 5Kb and larger, and provide improved genomic structural assessment capable of
displacing standard karyotyping.
The potential of genome editing approaches such as CRISPR/Cas9, for the treatment of diseases is widely
recognized, and realization of the promise of such therapeutic approaches will rely on accurate confirmation of
the presence and absence of potentially risky structural variants. For these reasons, comprehensive detection
and characterization of structural variations is a necessary step toward understanding gene editing and other
cell engineering systems. dGH combined with best-fit sequencing can provide a complete analysis of the
outcomes of gene editing from SNVs and indels though large, complex SVs.
抽象的
KromaTiD 目前的商业治疗基因编辑客户表达了对
筛选工程细胞的质量和安全性的标准方法,产生全面的基因组
定向基因组杂交 (dGH™) 的数据集具有改进的分辨率、定位和速度。
开发用于有效筛选细胞群中是否存在简单、复杂和异质的细胞
在这个项目中,工程细胞的综合质量控制测试策略,作者:
将五色全基因组 dGH 与临床重要的适合目的测序方法相结合
基因组工程系统中,我们首次提出了一种评估完整结果的方法
基因编辑:成功编辑、不成功编辑、脱靶编辑、序列变异、结构变异和
此外,我们建议开发一个标准化的数据规范,整合
将这些方法中的数据放入监管就绪的数据包中。
dGH 是一种原位杂交技术,利用高密度染色单体颜料直接询问
单细胞基因组结构,无需生物信息解释,提供完整的工具集
对编辑位点、每条染色体和整个基因组的 SV 进行无假设的单细胞测量。
对于开发基于基因编辑和其他细胞工程方法的疗法的公司来说,
了解 DSB 的编辑系统和误修复对于患者安全和监管批准至关重要。
目前,通过测序筛选批量编辑的细胞是否存在编辑位点错误,因为 DSB 并非全部如此。
由于发生在编辑位点,批量编辑细胞中的 SV 表现出编辑位点和编辑位点的复杂、异质混合物。
随机断点可用于筛查总体基因组缺陷,但无法检测小缺陷或缺陷。
复杂的结构变异检测来自没有目标的参考基因组的结构变异。
信息,解析 5Kb 及更大的 SV,并提供改进的基因组结构评估,能够
取代标准核型分析。
CRISPR/Cas9 等基因组编辑方法在治疗疾病方面的潜力已得到广泛认可
认识到,并实现这种治疗方法的承诺将依赖于准确的确认
由于这些原因,需要全面检测是否存在潜在风险的结构变异。
结构变异的表征是理解基因编辑和其他技术的必要步骤
细胞组合工程系统与最佳拟合测序可以提供完整的分析。
通过大型、复杂的 SV 进行 SNV 和插入缺失的基因编辑的结果。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher John Tompkins其他文献
Christopher John Tompkins的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher John Tompkins', 18)}}的其他基金
Automated, high-throughput identification of genetic structural variants for gene editing and undiagnosed genetic diseases screening
自动化、高通量鉴定遗传结构变异,用于基因编辑和未确诊遗传病筛查
- 批准号:
10228763 - 财政年份:2020
- 资助金额:
$ 35.05万 - 项目类别:
Automated, high-throughput identification of genetic structural variants for gene editing and undiagnosed genetic diseases screening
自动化、高通量鉴定遗传结构变异,用于基因编辑和未确诊遗传病筛查
- 批准号:
10080433 - 财政年份:2020
- 资助金额:
$ 35.05万 - 项目类别:
相似国自然基金
等位基因聚合网络模型的构建及其在叶片茸毛发育中的应用
- 批准号:32370714
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于人诱导多能干细胞技术研究突变等位基因特异性敲除治疗1型和2型长QT综合征
- 批准号:82300353
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
肠杆菌多粘菌素异质性耐药中phoPQ等位基因差异介导不同亚群共存的机制研究
- 批准号:82302575
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ACR11A不同等位基因调控番茄低温胁迫的机理解析
- 批准号:32302535
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
玉米穗行数QTL克隆及优异等位基因型鉴定
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
Identification of genetic collaborators in cancer with a brca2-mutant zebrafish model
利用 brca2 突变斑马鱼模型鉴定癌症的遗传合作者
- 批准号:
10409852 - 财政年份:2021
- 资助金额:
$ 35.05万 - 项目类别:
Identifying Mechanisms of Aurora Kinase A in Centrosome Clustering Using Chemical Genetics
利用化学遗传学鉴定中心体聚类中 Aurora 激酶 A 的机制
- 批准号:
10538615 - 财政年份:2020
- 资助金额:
$ 35.05万 - 项目类别:
Identifying Mechanisms of Aurora Kinase A in Centrosome Clustering Using Chemical Genetics
利用化学遗传学鉴定中心体聚类中 Aurora 激酶 A 的机制
- 批准号:
10321536 - 财政年份:2020
- 资助金额:
$ 35.05万 - 项目类别:
Exploration of long non-coding RNAs as synthetic essential targets in Pten-deficient cancers
探索长非编码 RNA 作为 Pten 缺陷癌症的合成必需靶标
- 批准号:
9910734 - 财政年份:2020
- 资助金额:
$ 35.05万 - 项目类别: