Neuroengineering a Robust Vocal Learning Phenotype in Mice as a Model for Treating Communication Disorders
神经工程小鼠强大的声音学习表型作为治疗沟通障碍的模型
基本信息
- 批准号:10241317
- 负责人:
- 金额:$ 106.12万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:Animal ModelAnimalsApraxiasBehaviorBehavioralBiological ModelsBirdsBrainBrain StemBrain regionCategoriesCommunicationCommunication impairmentComplexDevelopmentDiseaseElectrophysiology (science)Engineered GeneEngineeringExhibitsFOXP2 geneFoundationsFrequenciesFunctional disorderGene ExpressionGene Expression ProfileGenerationsGenesGeneticGenetic EngineeringGoalsHumanIndividualInstitutesKnowledgeLaboratoriesLanguageLanguage DevelopmentLanguage DisordersLarynxLearningLife StyleMaintenanceMeasuresModelingMolecularMotor NeuronsMusMutationNeurobiologyPhenotypePhysiologyPopulationPreclinical TestingProsencephalonRegulationResolutionShapesSongbirdsSpeechSpeech DisordersStudy modelsSystemTechniquesTestingTherapeuticTimeTransgenic AnimalsUltrasonicsUncertaintyVariantViralaxon guidancebasebehavioral phenotypingbrain circuitrybrain pathwaybrain repairclassical conditioningdifferential expressioneffective therapyexperiencegenetic approachgenetic manipulationgenetic testinghuman modelin vivoinnovationinsightinterestlanguage impairmentlearning abilitymutantnerve stem cellneural circuitneurobehavioralneurogeneticsneurophysiologynon-invasive imagingnovelreconstitutionrelating to nervous systemrepairedtooltraittranscription factortreatment strategyvocal learningvocalization
项目摘要
Abstract
The goal of this Transformative R01 project is to develop genetic strategies for neuroengineering a robust
vocal learning phenotype in mice, which may yield the first mammalian model for treating human vocal
communication disorders. Up to 10% of humans have some sort of communication dysfunction in their lifetimes
(Speech and Language Impairments, NICHCY, 2011), yet there is no genetically tractable system for
enhancing or repairing brain circuits involved in speech. We recently discovered that mice, which are highly
tractable, show evidence of a rudimentary vocal learning phenotype. Specifically, mice have some features
once thought unique to humans and other vocal learning species, including the ability modify ultrasonic
vocalizations (USVs) based on context; a forebrain vocal circuit that is active during vocalizing, is required for
frequency modulation and organization of syllables, and that directly connects to brainstem motor neurons that
control the larynx; and syllable sequencing deficits when given a FoxP2 mutation known to cause phoneme
sequencing dyspraxia in humans. However, compared to humans and songbirds, these phenotypes are much
more limited in mice. These and other findings led us to hypothesize that similar to natural variation in ability
among vocal learners, presumed vocal non-learners may exhibit vocal learning-like phenotypes along a
continuum of complexity across species. In this context, given the presence of the basic neuroarchitecture in
mice considered obligate for vocal learning in categorical species, we postulate that the mouse vocal system
and associated behaviors may be liable to enhancement, thereby providing a foundation for the development
of novel and effective strategies for ameliorating disorders of human vocal communication. To accomplish this,
we will exploit recent findings from our laboratory where we discovered convergent specialized gene
expression of ~50 genes in vocal brain regions of several vocal learning species, including humans and
songbirds, many of which are involved in brain pathway development. We hypothesize that evolutionary
changes in the regulation of trait-specialized genes are responsible for the emergence of more advanced vocal
plasticity and other complex behavioral traits. Our objective is to recapitulate the unique expression patterns
of these genes in mice to enhance the vocal learning phenotype at the level of connectivity, in vivo
electrophysiology, and behavior. We will do so using viral strategies, introduction of human neural stem cells,
and the generation of transgenic animals. If successful, our studies are expected to impact the field by: 1)
Establishing how vocal-learning specialized genes shape the neurocircuitry and physiology for this complex
behavior; 2) Developing a novel, genetically tractable mammalian model system for unveiling the
neurobiological details of human language and treatments for its dysfunction; and 3) Serving as a platform for
neuroengineering complex behavioral traits in general.
抽象的
这个变革性R01项目的目的是开发神经工程的遗传策略
小鼠的声带学习表型,这可能产生第一个用于治疗人声的哺乳动物模型
沟通障碍。多达10%的人在其一生中患有某种沟通功能障碍
(言语和语言障碍,Nichcy,2011年),但没有可用于的基因处理系统
增强或修复涉及语音的脑电路。我们最近发现,老鼠很高
可处理的,显示了基本声音学习表型的证据。具体来说,鼠标具有一些特征
曾经认为人类和其他声带学习物种独有的认为,包括修改超声波的能力
基于上下文的发声(USV);在发声过程中活跃的前脑声电路是必需的
音节的频率调制和组织,并直接连接到脑干运动神经元
控制喉;当给出已知引起音素的FOXP2突变时,音节测序缺陷
在人类中测序障碍。但是,与人类和鸣禽相比,这些表型很多
小鼠更有限。这些发现和其他发现使我们假设与能力自然变化相似
在声乐学习者中,假定的人声非学习者可能会表现出类似人声学习的表型
物种之间复杂性的连续性。在这种情况下,鉴于存在基本神经结构的存在
被认为是分类物种中声学学习的小鼠,我们假设鼠标声音系统
并且相关的行为可能有责任增强,从而为发展提供了基础
新颖有效的策略,用于改善人声交流的疾病。为此,
我们将利用实验室发现的最新发现,在那里我们发现了收敛的专业基因
在包括人类在内的几种声音学习物种的声带区域中表达了〜50个基因
鸣禽,其中许多参与大脑通路的发展。我们假设这种进化
特质特有基因调节的变化是导致出现更先进的人声的原因
可塑性和其他复杂的行为特征。我们的目标是概括独特的表达模式
这些基因在小鼠中以增强连通性水平的声带学习表型,体内
电生理学和行为。我们将使用病毒策略,引入人类神经干细胞,这样做,
以及转基因动物的产生。如果成功的话,我们的研究将通过以下方式影响该领域:1)
确定声音学习专业基因如何塑造这种复合物的神经记录和生理学
行为; 2)开发一种新颖的,可探针的哺乳动物模型系统,用于揭幕
人类语言和治疗障碍的神经生物学细节; 3)作为一个平台
神经工程的复杂行为特征一般。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Erich D Jarvis其他文献
Erich D Jarvis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Erich D Jarvis', 18)}}的其他基金
Neuroengineering a Robust Vocal Learning Phenotype in Mice as a Model for Treating Communication Disorders
神经工程小鼠强大的声音学习表型作为治疗沟通障碍的模型
- 批准号:
10685974 - 财政年份:2019
- 资助金额:
$ 106.12万 - 项目类别:
Neuroengineering a Robust Vocal Learning Phenotype in Mice as a Model for Treating Communication Disorders
神经工程小鼠强大的声音学习表型作为治疗沟通障碍的模型
- 批准号:
10002032 - 财政年份:2019
- 资助金额:
$ 106.12万 - 项目类别:
Neuroengineering a Robust Vocal Learning Phenotype in Mice as a Model for Treating Communication Disorders
神经工程小鼠强大的声音学习表型作为治疗沟通障碍的模型
- 批准号:
10472693 - 财政年份:2019
- 资助金额:
$ 106.12万 - 项目类别:
Neuroengineering a Robust Vocal Learning Phenotype in Mice as a Model for Treating Communication Disorders
神经工程小鼠强大的声音学习表型作为治疗沟通障碍的模型
- 批准号:
9789421 - 财政年份:2019
- 资助金额:
$ 106.12万 - 项目类别:
Auditory Protein Regulation in Normal & Abnormal States
正常情况下的听觉蛋白质调节
- 批准号:
7254135 - 财政年份:2006
- 资助金额:
$ 106.12万 - 项目类别:
Molecular Mechanisms of Basal Ganglia Regeneration in Songbirds
鸣禽基底神经节再生的分子机制
- 批准号:
7473240 - 财政年份:2006
- 资助金额:
$ 106.12万 - 项目类别:
Auditory Protein Regulation in Normal & Abnormal States
正常情况下的听觉蛋白质调节
- 批准号:
7148247 - 财政年份:2006
- 资助金额:
$ 106.12万 - 项目类别:
Molecular Mechanisms of Basal Ganglia Regeneration in Songbirds
鸣禽基底神经节再生的分子机制
- 批准号:
7264657 - 财政年份:2006
- 资助金额:
$ 106.12万 - 项目类别:
相似国自然基金
基于扁颅蝠类群系统解析哺乳动物脑容量适应性减小的演化机制
- 批准号:32330014
- 批准年份:2023
- 资助金额:215 万元
- 项目类别:重点项目
基于供应链视角的动物源性食品中抗微生物药物耐药性传导机制及监管策略研究
- 批准号:72303209
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于基因组数据自动化分析为后生动物类群大规模开发扩增子捕获探针的实现
- 批准号:32370477
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
大型野生动物对秦岭山地森林林下植物物种组成和多样性的影响及作用机制
- 批准号:32371605
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
闸坝建设对河口大型底栖动物功能与栖息地演变的影响-以粤西鉴江口为例
- 批准号:42306159
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Primary Cilia: A Novel Signaling Gateway To Neural Circuit Modulation
原发纤毛:神经回路调制的新型信号通路
- 批准号:
10478443 - 财政年份:2022
- 资助金额:
$ 106.12万 - 项目类别:
Primary Cilia: A Novel Signaling Gateway To Neural Circuit Modulation
原发纤毛:神经回路调制的新型信号通路
- 批准号:
10687260 - 财政年份:2022
- 资助金额:
$ 106.12万 - 项目类别:
Determination of the motor patterning system for murine vocalizations with breathing
小鼠呼吸发声运动模式系统的测定
- 批准号:
10593984 - 财政年份:2022
- 资助金额:
$ 106.12万 - 项目类别:
Uncovering the Internal Representation of Actions in Posterior Parietal Cortex
揭示后顶叶皮层动作的内部表征
- 批准号:
10507756 - 财政年份:2021
- 资助金额:
$ 106.12万 - 项目类别:
Uncovering the Internal Representation of Actions in Posterior Parietal Cortex
揭示后顶叶皮层动作的内部表征
- 批准号:
10629423 - 财政年份:2021
- 资助金额:
$ 106.12万 - 项目类别: