Microseizures, Ultra-slow & High Frequency Oscillations: Biomarkers of epilepsy
微惊厥,超慢
基本信息
- 批准号:7653568
- 负责人:
- 金额:$ 31.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2009
- 资助国家:美国
- 起止时间:2009-04-15 至 2014-03-31
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsArtsBiological MarkersBrainBrain regionCaliberCaringClinicalCortical ColumnDataData SetDatabasesDetectionDimensionsElectrodesElectroencephalographyElectrophysiology (science)EpilepsyEvaluationEventFreedomFrequenciesGenerationsGoalsHigh Frequency OscillationHumanHybridsLabelLaboratoriesLengthLesionLobarMapsMeasuresMiningNeocortexNeuronsNeurosciencesOperative Surgical ProceduresOutcomePatientsPerformancePropertyReceiver Operator CharacteristicsResearchResectableResectedResolutionSafetySeizuresSensitivity and SpecificitySignal TransductionSpatial DistributionStructureTestingVisualWorkbasebrain tissuecohortdetectorimprovedmeetingsmillimetermind controlneocorticalpublic health relevancespatiotemporalsuccess
项目摘要
DESCRIPTION (provided by applicant): The goal of this proposal is to localize human epileptic networks by characterizing their electrophysiological activity over a wide range of spatiotemporal scales. Decades of clinical intracranial EEG (IEEG) using restricted spatial (centimeter scale) and temporal (~0.5-100 Hz) bandwidth, based more on tradition than modern neuroscience, have frustrated epileptologists looking for discrete, resectable "electrographic lesions" during evaluation for epilepsy surgery. Similarly, recent efforts to apply direct brain stimulation to abort seizures after they are sufficiently established to be detected on standard clinical macroelectrodes have, so far, met with only partial success. We hypothesize that enhancing the spatial and temporal resolution of clinical intracranial EEG can improve the efficacy of epilepsy surgery and responsive brain stimulation to control seizures. Human epileptic networks produce pathological activity that ranges from seizures and spikes, generated by cubic centimeters of brain tissue, to high frequency oscillations that occur on sub-millimeter dimensions. Recent evidence suggests that important components of these signals are found at frequencies not detected by standard clinical IEEG. Using simultaneous IEEG recordings from microwire arrays and clinical macroelectrodes, our group has begun to characterize two potential signatures of epileptogenic brain, high frequency oscillations and "micro-seizures," that are outside the resolution of conventional clinical IEEG. In this application, we propose analysis of continuous, high-resolution, wide- bandwidth IEEG recorded simultaneously from microwire arrays and clinical macroelectrodes in order to localize human epileptic networks. We will correlate our findings with surgical outcome, prospectively, in a cohort of patients undergoing evaluation for epilepsy surgery. This work builds upon our established effort in Translational Neuroengineering melding state of the art epilepsy care with cutting-edge research. PUBLIC HEALTH RELEVANCE The neuronal networks of human epileptic brain are multiscale; extending from cellular assemblies organized on the scale of cortical columns (~300 - 600 <m) to large-scale networks organized over lobar structures. These pathological networks generate oscillations over a wide range of frequency (0.01 - 1000 Hz) and spatial scales not probed by clinical EEG. Our laboratory and others have identified pathological network oscillations occurring outside the range of clinical IEEG that appear to be signatures of the epileptogenic zone.
描述(由申请人提供):该提案的目标是通过在广泛的时空尺度上表征人类癫痫网络的电生理活动来定位人类癫痫网络。几十年来,临床颅内脑电图 (IEEG) 使用受限的空间(厘米级)和时间(~0.5-100 Hz)带宽,更多地基于传统而不是现代神经科学,这让癫痫学家在癫痫评估期间寻找离散的、可切除的“电图病变”感到沮丧外科手术。同样,在癫痫发作足以被标准临床大电极检测到后,最近应用直接脑刺激来中止癫痫发作的努力迄今为止只取得了部分成功。我们假设提高临床颅内脑电图的空间和时间分辨率可以提高癫痫手术和响应性脑刺激控制癫痫发作的效果。人类癫痫网络产生的病理活动范围从立方厘米脑组织产生的癫痫发作和尖峰,到亚毫米尺寸上发生的高频振荡。最近的证据表明,这些信号的重要组成部分是在标准临床 IEEG 未检测到的频率下发现的。利用微线阵列和临床大电极的同时 IEEG 记录,我们的小组已经开始表征致癫痫脑的两个潜在特征:高频振荡和“微癫痫发作”,这超出了传统临床 IEEG 的分辨率。在此应用中,我们建议对从微线阵列和临床大电极同时记录的连续、高分辨率、宽带 IEEG 进行分析,以定位人类癫痫网络。我们将前瞻性地将我们的研究结果与接受癫痫手术评估的患者队列的手术结果相关联。这项工作建立在我们将最先进的癫痫护理与前沿研究相融合的转化神经工程方面的既定努力的基础上。公共卫生相关性 人类癫痫大脑的神经元网络是多尺度的;从以皮质柱(~300 - 600 <m)规模组织的细胞组件扩展到以脑叶结构组织的大规模网络。这些病理网络产生临床脑电图无法探测到的广泛频率(0.01 - 1000 Hz)和空间尺度的振荡。我们的实验室和其他实验室已经确定了临床 IEEG 范围之外发生的病理网络振荡,这似乎是致痫区的特征。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Gregory A Worrell其他文献
Thalamic stimulation induced changes in effective connectivity
丘脑刺激引起有效连接的变化
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
N. Gregg;G. Valencia;Harvey Huang;B. Lundstrom;Jamie J. Van Gompel;Kai J. Miller;Gregory A Worrell;Dora Hermes - 通讯作者:
Dora Hermes
Spatiotemporal Rhythmic Seizure Sources Can be Imaged by means of Biophysically Constrained Deep Neural Networks
时空节律性癫痫发作源可以通过生物物理约束的深度神经网络进行成像
- DOI:
10.1101/2023.11.30.23299218 - 发表时间:
2023-12-01 - 期刊:
- 影响因子:0
- 作者:
Rui Sun;Abbas Sohrabpour;Boney Joseph;Gregory A Worrell;Bin He - 通讯作者:
Bin He
Direct Electrical Stimulation of the Human Entorhinal Region and Hippocampus Impairs Memory --manuscript Draft-- Powered by Editorial Manager® and Produxion Manager® from Aries Systems Corporation Direct Electrical Stimulation of the Human Entorhinal Region and Hippocampus Impairs Memory
人体内嗅区和海马体的直接电刺激会损害记忆力——手稿草稿——由 Aries Systems Corporation 的Editorial Manager® 和 Produxion Manager® 提供技术支持 人体内嗅区和海马体的直接电刺激会损害记忆力
- DOI:
10.1016/j.knosys.2023.111358 - 发表时间:
2023-12-01 - 期刊:
- 影响因子:0
- 作者:
Joshua J. Jacobs;Joshua J. Jacobs;Sang Ah Miller;Tom Lee;Andrew J Coffey;Michael R Watrous;A. Sperling;Gregory Sharan;Brent Worrell;Bradley Berry;Barbara Lega;Kathryn Jobst;Robert E Davis;Sameer A Gross;Youssef Sheth;Sandhitsu R Ezzyat;Joel Das;Richard Stein;Michael J Gorniak;Daniel S Kahana;Rizzuto;Jonathan F. Miller;Sang Ah Lee;Tom Coffey;Andrew J. Watrous;M. Sperling;A. Sharan;Gregory A Worrell;Brent M. Berry;B. Lega;B. Jobst;Kathryn A. Davis;Robert E. Gross;S. Sheth;Youssef Ezzyat;Sandhitsu R. Das;J. Stein;R. Gorniak;M. Kahana;D. Rizzuto - 通讯作者:
D. Rizzuto
Functional and anatomical connectivity predict brain stimulation’s mnemonic effects
功能和解剖连接预测大脑刺激的助记效果
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:3.7
- 作者:
Youssef Ezzyat;J. Kragel;E. Solomon;B. Lega;Joshua P. Aronson;Barbara C Jobst;Robert E. Gross;Michael R. Sperling;Gregory A Worrell;Sameer A. Sheth;P. Wanda;D. Rizzuto;M. Kahana - 通讯作者:
M. Kahana
Frontal Lobe Epilepsy
额叶癫痫
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Lily C. Wong;Gregory A Worrell - 通讯作者:
Gregory A Worrell
Gregory A Worrell的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Gregory A Worrell', 18)}}的其他基金
Reliable Seizure Prediction Using Physiological Signals and Machine Learning
使用生理信号和机器学习进行可靠的癫痫发作预测
- 批准号:
10518240 - 财政年份:2022
- 资助金额:
$ 31.92万 - 项目类别:
Reliable Seizure Prediction Using Physiological Signals and Machine Learning
使用生理信号和机器学习进行可靠的癫痫发作预测
- 批准号:
10629373 - 财政年份:2022
- 资助金额:
$ 31.92万 - 项目类别:
Neurophysiologically Based Brain State Tracking & Modulation in Focal Epilepsy
基于神经生理学的大脑状态跟踪
- 批准号:
9972970 - 财政年份:2015
- 资助金额:
$ 31.92万 - 项目类别:
Reliable Seizure Prediction Using Physiological Signals and Machine Learning
使用生理信号和机器学习进行可靠的癫痫发作预测
- 批准号:
9445497 - 财政年份:2015
- 资助金额:
$ 31.92万 - 项目类别:
Reliable Seizure Prediction Using Physiological Signals and Machine Learning
使用生理信号和机器学习进行可靠的癫痫发作预测
- 批准号:
9238808 - 财政年份:2015
- 资助金额:
$ 31.92万 - 项目类别:
Neurophysiologically Based Brain State Tracking & Modulation in Focal Epilepsy
基于神经生理学的大脑状态跟踪
- 批准号:
9921573 - 财政年份:2015
- 资助金额:
$ 31.92万 - 项目类别:
Microseizures, Ultra-slow & High Frequency Oscillations: Biomarkers of epilepsy
微惊厥,超慢
- 批准号:
8234974 - 财政年份:2009
- 资助金额:
$ 31.92万 - 项目类别:
Microseizures, Ultra-slow & High Frequency Oscillations: Biomarkers of epilepsy
微惊厥,超慢
- 批准号:
8053265 - 财政年份:2009
- 资助金额:
$ 31.92万 - 项目类别:
Microseizures, Ultra-slow & High Frequency Oscillations: Biomarkers of epilepsy
微惊厥,超慢
- 批准号:
8448247 - 财政年份:2009
- 资助金额:
$ 31.92万 - 项目类别:
Epileptiform oscillations, EEG & seizure prediction
癫痫样振荡,脑电图
- 批准号:
6832791 - 财政年份:2004
- 资助金额:
$ 31.92万 - 项目类别:
相似国自然基金
青藏高原“中更新世”岩面艺术的热释光年代学研究
- 批准号:42371161
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
面向语义内容理解和艺术特征表示的视觉属性迁移方法研究
- 批准号:62202360
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于音色与颜色关联的艺术视听感知计算方法研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
关系地理视角下“艺术下乡”对乡村重构的过程及作用机理研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
科学与艺术的邂逅:艺术对科技创新的启示
- 批准号:
- 批准年份:2022
- 资助金额:10 万元
- 项目类别:
相似海外基金
Prematurity-Related Ventilatory Control: Leadership Data and Coordination Center (LDCC)
早产相关通气控制:领导数据和协调中心 (LDCC)
- 批准号:
9170127 - 财政年份:2016
- 资助金额:
$ 31.92万 - 项目类别:
A Bayesian Model for MRI-based Accelerated 4D Flow Imaging of Aortic Valve Stenosis
基于 MRI 的主动脉瓣狭窄加速 4D 血流成像的贝叶斯模型
- 批准号:
9112364 - 财政年份:2016
- 资助金额:
$ 31.92万 - 项目类别:
Prematurity-Related Ventilatory Control: Leadership Data and Coordination Center (LDCC)
早产相关通气控制:领导数据和协调中心 (LDCC)
- 批准号:
9337265 - 财政年份:2016
- 资助金额:
$ 31.92万 - 项目类别:
Prematurity-Related Ventilatory Control: Leadership Data and Coordination Center (LDCC)
早产相关通气控制:领导数据和协调中心 (LDCC)
- 批准号:
10004706 - 财政年份:2016
- 资助金额:
$ 31.92万 - 项目类别:
Phenomic and genomic study to subphenotype Hispanics with pulmonary hypertension
西班牙裔肺动脉高压亚表型的表型和基因组研究
- 批准号:
8795928 - 财政年份:2014
- 资助金额:
$ 31.92万 - 项目类别: