Touching on locomotion: an anatomical and functional analysis of spinal cord circuits that shape the way we move
触及运动:对塑造我们运动方式的脊髓回路进行解剖学和功能分析
基本信息
- 批准号:10266790
- 负责人:
- 金额:$ 43.28万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-30 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAfferent NeuronsAnatomyBehaviorBehavioral AssayBiological AssayBiomedical ResearchComplexComputer Vision SystemsCoupledCutaneousDataDiseaseElectrophysiology (science)EnvironmentExtensorFlexorFoundationsGeneticHindlimbIndividualInjuryInterneuronsInvestigationJointsLateralLengthLimb structureLinkLocomotionMachine LearningMechanicsModalityMotorMotor ActivityMotor NeuronsMotor PathwaysMotor outputMovementMuscleMuscle ContractionNeuronsNeurosciencesOrganOutputParvalbuminsPathway interactionsPatternPositioning AttributePropertyProprioceptionProprioceptorQuality of lifeReflex actionResearchResolutionSensorimotor functionsSensoryShapesSkinSliceSpeedSpinalSpinal CordSpinal cord posterior hornStructureSynapsesTechnologyTestingTouch sensationWalkingWorkbehavioral studycutaneous sensory neuronselectrical propertygenetic approachimprovedin vivoinsightinterdisciplinary approachmotor behaviormotor function improvementmouse geneticsmultimodalitynervous system disorderneural circuitnovelnovel strategiesnovel therapeuticsprogramsreceptorresponsesensory inputsensory stimulussomatosensorytoolvibration
项目摘要
Project Summary/Abstract
A central challenge in neuroscience biomedical research is to define the neural circuits that underlie behavior.
Investigations of spinal cord circuits are ideally suited to answer these questions: the direct link between sensory
input and motor output affords an exquisite experimental tractability that has been leveraged since Sherrington’s
pioneering work on the proprioceptive reflex pathway1. Indeed, great progress has been made since then in
understanding how proprioceptors (i.e., muscle sensory neurons) shape motor activity. Touch receptors in skin
(i.e., cutaneous sensory neurons) encoding sensory modalities like vibration, indentation, and slip, are also
critical for adapting the way we walk in response to changes in our environment. However, spinal cord integration
of touch pathways that sculpt motor activity remains profoundly poorly understood. To address key conceptual
and technical challenges in this field, we have built an extensive mouse genetic toolbox to visualize, quantify and
manipulate touch-specific spinal cord circuits. In addition, we merge these powerful genetic tools with motor
assays involving high-speed cameras, computer vision, and machine learning to quantify somatosensory
behavior with unprecedented sensitivity. Combining these technologies, we identified a novel touch-specific
premotor network important for sensorimotor function. Our overall hypothesis is that this network represents a
critical node for integrating touch information to influence specific patterns of muscle groups that facilitate both
corrective movements during locomotion and motor ‘switching’ during naturalistic behaviors. We interrogate this
novel network to address fundamental questions whose answers will enable a deeper understanding of how
touch pathways converge in the spinal cord to shape movement. In Aims 1 and 2 we combine genetic approaches,
high-resolution synaptic analysis, slice electrophysiology and in-vivo muscle recordings to test the hypothesis
that this network integrates multimodal sensory information to coordinate specific muscles in response to
cutaneous input. Aim 3 combines joint and muscle activity recordings to test the hypothesis that this network
shapes cutaneous responses to facilitate corrective movements during locomotion. We extend these behavioral
studies by implementing computer vision and machine learning to parse out naturalistic behaviors into sub-
second movements to test the hypothesis that touch-specific premotor networks sculpt how micro-movements
are pieced together into complex motor behaviors
. By understanding the final path for movement organization
(i.e., the spinal cord) our research will lead to new therapies aimed at improving the quality of life of people
suffering from a variety of neurological disorders. Thus, this research lays the critical foundation for novel ways
to modulate spinal circuits for improving motor function.
项目概要/摘要
神经科学生物医学研究的一个核心挑战是定义行为背后的神经回路。
脊髓回路的研究非常适合回答以下问题:感觉和感觉之间的直接联系
输入和电机输出提供了自谢林顿以来一直被利用的精致的实验易处理性
事实上,自那时以来,本体感觉反射通路方面的开创性工作已经取得了巨大进展。
了解本体感受器(即肌肉感觉神经元)如何塑造皮肤中的触觉感受器。
(即皮肤感觉神经元)编码振动、压痕和滑动等感觉模式,也是
然而,脊髓整合对于适应我们的行走方式以适应环境的变化至关重要。
塑造运动活动的触觉通路仍然知之甚少。
和该领域的技术挑战,我们建立了一个广泛的小鼠遗传工具箱来可视化、量化和
此外,我们将这些强大的遗传工具与运动结合起来。
涉及高速摄像机、计算机视觉和机器学习的测定,以量化体感
结合这些技术,我们发现了一种新颖的触摸特定行为。
我们的总体假设是,该网络代表了一个对感觉运动功能很重要的运动前网络。
整合触摸信息以影响肌肉群特定模式的关键节点,从而促进两者
我们质疑自然行为期间运动和运动“切换”过程中的纠正动作。
新颖的网络来解决基本问题,其答案将使人们更深入地了解如何
在目标 1 和 2 中,我们结合了遗传方法,
高分辨率突触分析、切片电生理学和体内肌肉记录来检验假设
该网络集成了多模式感觉信息来协调特定肌肉以响应
目标 3 结合关节和肌肉活动记录来测试该网络的假设。
我们扩展了这些行为,以促进运动过程中的纠正运动。
通过实施计算机视觉和机器学习来将自然行为解析为子行为的研究
第二个动作来测试触摸特异性前运动网络如何塑造微动作的假设
被拼凑成复杂的运动行为
通过了解运动组织的最终路径
(即脊髓)我们的研究将带来旨在改善人们生活质量的新疗法
因此,这项研究为新方法奠定了重要基础。
调节脊髓回路以改善运动功能。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Victoria Eugenia Guadalupe Abraira其他文献
Victoria Eugenia Guadalupe Abraira的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Victoria Eugenia Guadalupe Abraira', 18)}}的其他基金
Refining oxytocin therapy for pain: context is key
完善催产素治疗疼痛的方法:背景是关键
- 批准号:
10595113 - 财政年份:2023
- 资助金额:
$ 43.28万 - 项目类别:
Spinal Neurons that shape the way we move: diversity supplement for Ms. Gonzalez
塑造我们运动方式的脊髓神经元:冈萨雷斯女士的多样性补充
- 批准号:
10352898 - 财政年份:2021
- 资助金额:
$ 43.28万 - 项目类别:
Touching on locomotion: an anatomical and functional analysis of spinal cord circuits that shape the way we move
触及运动:对塑造我们运动方式的脊髓回路进行解剖学和功能分析
- 批准号:
10622133 - 财政年份:2020
- 资助金额:
$ 43.28万 - 项目类别:
A new mechanistic and technological framework for uncovering the spinal cord neural systems important for functional recovery after injury
揭示脊髓神经系统对损伤后功能恢复至关重要的新机制和技术框架
- 批准号:
10391487 - 财政年份:2020
- 资助金额:
$ 43.28万 - 项目类别:
A new mechanistic and technological framework for uncovering the spinal cord neural systems important for functional recovery after injury
揭示脊髓神经系统对损伤后功能恢复至关重要的新机制和技术框架
- 批准号:
10876503 - 财政年份:2020
- 资助金额:
$ 43.28万 - 项目类别:
Touching on locomotion: an anatomical and functional analysis of spinal cord circuits that shape the way we move
触及运动:对塑造我们运动方式的脊髓回路进行解剖学和功能分析
- 批准号:
10438259 - 财政年份:2020
- 资助金额:
$ 43.28万 - 项目类别:
Touching on locomotion: an anatomical and functional analysis of spinal cord circuits that shape the way we move
触及运动:对塑造我们运动方式的脊髓回路进行解剖学和功能分析
- 批准号:
10533598 - 财政年份:2020
- 资助金额:
$ 43.28万 - 项目类别:
Touching on locomotion: an anatomical and functional analysis of spinal cord circuits that shape the way we move
触及运动:对塑造我们运动方式的脊髓回路进行解剖学和功能分析
- 批准号:
10094597 - 财政年份:2020
- 资助金额:
$ 43.28万 - 项目类别:
Touching on locomotion: an anatomical and functional analysis of spinal cord circuits that shape the way we move
触及运动:对塑造我们运动方式的脊髓回路进行解剖学和功能分析
- 批准号:
10887766 - 财政年份:2020
- 资助金额:
$ 43.28万 - 项目类别:
相似国自然基金
干旱内陆河高含沙河床对季节性河流入渗的影响机制
- 批准号:52379031
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
沿纬度梯度冠层结构多样性变化对森林生产力的影响
- 批准号:32371610
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
开放与二元结构下的中国工业化:对增长与分配的影响机制研究
- 批准号:72373005
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
基于MF和HPLC-ICP-MS监测蛋白冠形成与转化研究稀土掺杂上转换纳米颗粒对凝血平衡的影响机制
- 批准号:82360655
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
高寒草灌植被冠层与根系结构对三维土壤水分动态的影响研究
- 批准号:42301019
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Isoform- and Sex-Specific Functions of CGRP in Gastrointestinal Motility
CGRP 在胃肠动力中的亚型和性别特异性功能
- 批准号:
10635765 - 财政年份:2023
- 资助金额:
$ 43.28万 - 项目类别:
The role of core circadian regulator Bmal1 in axonal regeneration and nerve repair
核心昼夜节律调节因子 Bmal1 在轴突再生和神经修复中的作用
- 批准号:
10677932 - 财政年份:2023
- 资助金额:
$ 43.28万 - 项目类别:
Intra-Articular Drug Delivery Modulating Immune Cells in Inflammatory Joint Disease
关节内药物递送调节炎症性关节疾病中的免疫细胞
- 批准号:
10856753 - 财政年份:2023
- 资助金额:
$ 43.28万 - 项目类别:
Neuroimmune interactions for laryngeal sensorimotor neuropathy in postviral influenza infection
病毒性流感感染后喉部感觉运动神经病变的神经免疫相互作用
- 批准号:
10827254 - 财政年份:2023
- 资助金额:
$ 43.28万 - 项目类别: