Hannah's Diversity Supplement grant
汉娜的多元化补助金
基本信息
- 批准号:10788997
- 负责人:
- 金额:$ 4.01万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-30 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAffectAfferent NeuronsBehaviorBehavioral AssayBiological AssayBrainCodeComplexComputer Vision SystemsCoupledCutaneousDataDiseaseElectrophysiology (science)EnvironmentExtensorFlexorFoundationsGeneticGrantHindlimbIndividualInjuryInterneuronsJointsLateralLengthLimb structureLinkLocomotionMachine LearningMapsMechanicsModalityMotorMotor ActivityMotor NeuronsMotor PathwaysMotor outputMovementMuscleMuscle ContractionNeuronsOrganOutputParvalbuminsPathway interactionsPatternPersonsPositioning AttributePropertyProprioceptionProprioceptorQuality of lifeReflex actionResearchResolutionSensorimotor functionsSensorySensory ProcessShapesSkinSliceSpeedSpinalSpinal CordSpinal cord posterior hornStructureSynapsesTechnologyTestingThinkingTouch sensationVentral Horn of the Spinal CordVertebral columnVisualizationWalkingWorkbehavioral responsebehavioral studyelectrical propertygenetic approachimprovedin vivoinsightinterdisciplinary approachmotor behaviormotor function improvementmouse geneticsmultimodalitynervous system disorderneuralnovelnovel strategiesnovel therapeuticsprogramsreceptorresponsesensory inputsensory stimulussensory systemsomatosensorytoolvibration
项目摘要
Project Summary/Abstract
Elucidating how our brain integrates information to elicit appropriate behavioral responses requires mechanistic
insights into how our sensory systems are wired to integrate diverse sensory modalities and transform them into
the neural codes of motor action. Studies of spinal cord circuits are well-suited to exploring these questions: the
direct link between sensory input and motor output (i.e., muscle contraction) affords an exquisite experimental
tractability that has been leveraged since Sherrington’s pioneering work on the proprioceptive reflex pathway.
Indeed, great progress has been made since then in understanding how proprioceptors (i.e., muscle sensory
neurons) shape motor activity. Touch receptors in skin encoding sensory modalities like vibration, indentation,
and slip, are also critical for adapting the way we walk in response to changes in our environment. However, the
spinal cord integration of touch pathways to sculpt motor activity remains profoundly poorly understood. To
address key conceptual and technical challenges in this field, we have built an extensive mouse genetic toolbox
to visualize, quantify and manipulate touch-specific spinal cord circuits. In addition, we merge these powerful
genetic tools with motor assays involving high-speed cameras, computer vision, and machine learning to quantify
somatosensory behavior with unprecedented sensitivity. Combining these technologies, we identified a novel
touch-specific premotor network important for sensorimotor function. Our overall hypothesis is that this network
represents a critical node for integrating touch and proprioceptive information to influence specific patterns of
muscle groups that facilitate both corrective movements during locomotion and motor ‘switching’ during
naturalistic behaviors. We interrogate this novel network to address fundamental questions whose answers will
enable an understanding of how touch pathways converge to shape movement. In Aims 1 and 2 we combine
genetic approaches, high-resolution synaptic analysis, slice electrophysiology and in-vivo muscle recordings to
test the hypothesis that this network integrates multimodal sensory information to influence specific muscle
responses to sensory input. Aim 3 combines joint and muscle activity recordings to test the hypothesis that this
network shapes cutaneous responses to facilitate corrective movements during locomotion. We extend these
behavioral studies by implementing computer vision and machine learning to parse out naturalistic behaviors
into sub-second movements to test the hypothesis that touch-specific premotor networks sculpt how micro-
movements are pieced together into complex motor behaviors
. By understanding the final path for movement
organization (i.e., the spinal cord) our research will lead to new therapies aimed at improving the quality of life of
people suffering from a variety of neurological disorders. Thus, this research lays the critical foundation for novel
ways of thinking about modulating spinal circuits for improving motor function.
项目摘要/摘要
阐明我们的大脑如何整合信息以引起适当的行为反应需要机械
深入了解我们的感觉系统如何将潜水员的感觉方式整合在一起并将其转变为
运动动作的神经法规。脊髓电路的研究非常适合探索这些问题:
感觉输入与电机输出(即肌肉收缩)之间的直接联系提供了独家实验
自谢灵顿(Sherrington)在本体感受反射途径上开创性的工作以来,已经利用了障碍。
确实,从那时起,就已经取得了巨大进步,以理解本体感受器如何(即肌肉感觉
神经元)塑造运动活动。皮肤中的触摸受体编码振动,凹痕,凹痕,
滑倒也是适应我们对环境变化的回应方式至关重要的。但是,
雕刻运动活动的触摸途径的脊髓整合仍然深入了解。到
解决该领域的关键概念和技术挑战,我们建立了广泛的鼠标基因工具箱
可视化,量化和操纵触摸特异性的脊髓电路。此外,我们合并了这些强大的
带有运动测定的遗传工具,涉及高速摄像机,计算机视觉和机器学习以量化
体感行为具有前所未有的灵敏度。结合了这些技术,我们确定了一本小说
触摸特异性前运动网络对于感觉运动功能很重要。我们的总体假设是该网络
代表了整合触摸和本体感受信息的关键节点,以影响特定模式
在移动期间既有矫正运动的肌肉群
自然行为。我们询问这个新颖的网络,以解决基本问题的答案
能够了解触摸路径如何汇聚以塑造运动。在目标1和2中,我们结合了
遗传方法,高分辨率合成分析,切片电生理学和体内肌肉记录
测试该网络集成多模式感官信息以影响特定肌肉的假设
对感觉输入的响应。 AIM 3结合了关节和肌肉活动记录,以检验以下假设。
网络形状皮肤反应以促进运动过程中的纠正措施。我们扩展了这些
行为研究通过实施计算机视觉和机器学习来解析自然主义行为
进入亚秒运动,以检验以下假设,即触摸特异性的前运动网络雕刻了微观
动作将组合成复杂的运动行为
。通过了解最终运动道路
组织(即脊髓)我们的研究将导致新的疗法,以改善生活质量
患有各种神经系统疾病的人。这是这项研究为小说的关键基础
思考调节脊柱回路以改善运动功能的方式。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Victoria Eugenia Guadalupe Abraira其他文献
Victoria Eugenia Guadalupe Abraira的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Victoria Eugenia Guadalupe Abraira', 18)}}的其他基金
Refining oxytocin therapy for pain: context is key
完善催产素治疗疼痛的方法:背景是关键
- 批准号:
10595113 - 财政年份:2023
- 资助金额:
$ 4.01万 - 项目类别:
Spinal Neurons that shape the way we move: diversity supplement for Ms. Gonzalez
塑造我们运动方式的脊髓神经元:冈萨雷斯女士的多样性补充
- 批准号:
10352898 - 财政年份:2021
- 资助金额:
$ 4.01万 - 项目类别:
Touching on locomotion: an anatomical and functional analysis of spinal cord circuits that shape the way we move
触及运动:对塑造我们运动方式的脊髓回路进行解剖学和功能分析
- 批准号:
10622133 - 财政年份:2020
- 资助金额:
$ 4.01万 - 项目类别:
Touching on locomotion: an anatomical and functional analysis of spinal cord circuits that shape the way we move
触及运动:对塑造我们运动方式的脊髓回路进行解剖学和功能分析
- 批准号:
10266790 - 财政年份:2020
- 资助金额:
$ 4.01万 - 项目类别:
A new mechanistic and technological framework for uncovering the spinal cord neural systems important for functional recovery after injury
揭示脊髓神经系统对损伤后功能恢复至关重要的新机制和技术框架
- 批准号:
10391487 - 财政年份:2020
- 资助金额:
$ 4.01万 - 项目类别:
A new mechanistic and technological framework for uncovering the spinal cord neural systems important for functional recovery after injury
揭示脊髓神经系统对损伤后功能恢复至关重要的新机制和技术框架
- 批准号:
10876503 - 财政年份:2020
- 资助金额:
$ 4.01万 - 项目类别:
Touching on locomotion: an anatomical and functional analysis of spinal cord circuits that shape the way we move
触及运动:对塑造我们运动方式的脊髓回路进行解剖学和功能分析
- 批准号:
10438259 - 财政年份:2020
- 资助金额:
$ 4.01万 - 项目类别:
Touching on locomotion: an anatomical and functional analysis of spinal cord circuits that shape the way we move
触及运动:对塑造我们运动方式的脊髓回路进行解剖学和功能分析
- 批准号:
10533598 - 财政年份:2020
- 资助金额:
$ 4.01万 - 项目类别:
Touching on locomotion: an anatomical and functional analysis of spinal cord circuits that shape the way we move
触及运动:对塑造我们运动方式的脊髓回路进行解剖学和功能分析
- 批准号:
10094597 - 财政年份:2020
- 资助金额:
$ 4.01万 - 项目类别:
Touching on locomotion: an anatomical and functional analysis of spinal cord circuits that shape the way we move
触及运动:对塑造我们运动方式的脊髓回路进行解剖学和功能分析
- 批准号:
10887766 - 财政年份:2020
- 资助金额:
$ 4.01万 - 项目类别:
相似国自然基金
海洋缺氧对持久性有机污染物入海后降解行为的影响
- 批准号:42377396
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
氮磷的可获得性对拟柱孢藻水华毒性的影响和调控机制
- 批准号:32371616
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
还原条件下铜基催化剂表面供-受电子作用表征及其对CO2电催化反应的影响
- 批准号:22379027
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
CCT2分泌与内吞的机制及其对毒性蛋白聚集体传递的影响
- 批准号:32300624
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:青年科学基金项目
在轨扰动影响下空间燃料电池系统的流动沸腾传质机理与抗扰控制研究
- 批准号:52377215
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
The role of core circadian regulator Bmal1 in axonal regeneration and nerve repair
核心昼夜节律调节因子 Bmal1 在轴突再生和神经修复中的作用
- 批准号:
10677932 - 财政年份:2023
- 资助金额:
$ 4.01万 - 项目类别:
Intra-Articular Drug Delivery Modulating Immune Cells in Inflammatory Joint Disease
关节内药物递送调节炎症性关节疾病中的免疫细胞
- 批准号:
10856753 - 财政年份:2023
- 资助金额:
$ 4.01万 - 项目类别:
Isoform- and Sex-Specific Functions of CGRP in Gastrointestinal Motility
CGRP 在胃肠动力中的亚型和性别特异性功能
- 批准号:
10635765 - 财政年份:2023
- 资助金额:
$ 4.01万 - 项目类别:
Neuroimmune interactions for laryngeal sensorimotor neuropathy in postviral influenza infection
病毒性流感感染后喉部感觉运动神经病变的神经免疫相互作用
- 批准号:
10827254 - 财政年份:2023
- 资助金额:
$ 4.01万 - 项目类别: