Tools for Prediction of ADME-Tox Properties

ADME-Tox 特性预测工具

基本信息

  • 批准号:
    10262292
  • 负责人:
  • 金额:
    $ 3.37万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
  • 资助国家:
    美国
  • 起止时间:
  • 项目状态:
    未结题

项目摘要

This project was started as part of a joint project of the CADD Group with several groups at the Department of Defense (DoD), with the title Computational platforms for transforming small molecules into investigational new drugs. The projects lead PI on the DoD side was Dr. S. Anders Wallqvist, Tri-Service Biotechnology High-Performance Computing Software Applications Institute for Force Health Protection (BHSAI), Telemedicine and Advanced Technology Research Center (TATRC), U.S. Army Medical Research and Materiel Command (USAMRMC), 2405 Whittier Drive, Suite 200, Frederick, MD 217602. Other participating groups were at the Department of Biochemistry, Walter Reed Army Institute of Research (WRAIR), and the Department of Cell Biology and Biochemistry, U.S. Army Medical Research Institute for Infectious Diseases (USAMRIID). The aim of the overall project was to integrate three fundamental aspects of the preclinical drug development phase, i.e., structure-based drug design, analysis and prediction of pharmacological data, and the prediction of adverse and off-target effects, in particular those related to drug metabolization, from chemical structures. The most important aspect of Dr. Pugliese's work concerned metabolism and metabolites. The work having effectively started in early 2010, the former CADD Group member Dr. Pugliese worked on implementing a resource for successful prediction of metabolism and metabolites of drug-like small molecules as part of our computer-aided drug design capabilities, until his departure from NCI for a permanent position in June, 2011. While the initial tests and application of these resources were done in the context of pathogens of interest to DoD, the general capability of predicting metabolic stability, metabolization profile and specific metabolites of a small molecule is applicable to all types of drug development, and therefore is very useful in the development of anti-cancer therapeutics aiming at molecular targets of high interest to NCI, as well as in, e.g., NCI's anti-HIV drug design projects. The project has therefore been continued even after the completion of the formal collaboration with the DoD groups in summer 2011. The first phase of this project, consisting of canvassing the field for predictive computer tools as well as data sets that can be used to test these tools and develop (better) predictive models, has been successfully completed. Both commercial and free resources have been compiled or acquired. A comparison and benchmark study with appropriate publication was completed, submitted, and is in press. In this part of the project, we focused on (prediction of) metabolic stability data such as half-life values in Human Liver Microsome or Human Hepatocyte assays. This paper also includes a small benchmark study of predictions of cytochrome P450 interactions (substrates, inhibitors, and inducers). In the second, more-applied, phase of the project, we developed QSAR models for metabolic stability of compounds, based on in vitro half-life assay data measured in human liver microsomes. A variety of QSAR models were generated using different statistical methods and descriptor sets implemented in both open-source and commercial programs (KNIME, GUSAR, StarDrop). The models obtained were compared using four different external validation sets from public and commercial data sources, including two smaller sets of in vivo half-life data in humans. The most predictive models were used for predicting the metabolic stability of compounds from the Open NCI Database, the results of which have been made publicly available on the NCI/CADD Group web server (http://cactus.nci.nih.gov). Both this study and the paper mentioned above have been published in the journal Future Medicinal Chemistry. Current efforts focus on broadening our predictive capabilities to models of all types of properties in the area of absorption, distribution, metabolism, excretion, and toxicities (ADME/Tox) of small molecules. Recently, Dr. Alexey Zakharov has made available a suite of predictive models for physicochemical properties, toxicities, as well as some biological activities in the form of the Chemical Activity Predictor (CAP) web service on the NCI/CADD Group web server. In the context of this topic, CADD Group members have also developed and improved general QSAR-related approaches and algorithms, as well as analyzed (Q)SAR models' dependency on mix-and-match'ability of assay data coming both from specific projects and large public databases such as PubChem and ChEMBL. Further analyses of Q(SAR) data and approaches have been performed with our Russian colleagues, which includes several papers of "mix-and-match" issue analyses. Also, large ADME-Tox computations are being performed for molecules from the SAVI project (Project 6).
该项目是作为CADD集团联合项目的一部分开始的,该项目在国防部(DOD)的几个小组,其标题是将小分子转化为研究性新药的标题计算平台。 The projects lead PI on the DoD side was Dr. S. Anders Wallqvist, Tri-Service Biotechnology High-Performance Computing Software Applications Institute for Force Health Protection (BHSAI), Telemedicine and Advanced Technology Research Center (TATRC), U.S. Army Medical Research and Materiel Command (USAMRMC), 2405 Whittier Drive, Suite 200, Frederick, MD 217602. Other participating groups were at the Department沃尔特·里德(Walter Reed)陆军研究所(WRAIR)以及美国陆军传染病医学研究所(USAMRIID)的细胞生物学与生物化学系(USAMRIID)。整个项目的目的是整合临床前药物开发阶段的三个基本方面,即,基于结构的药物设计,药理学数据的分析和预测以及对化学结构的不良和脱离靶向效应的预测,尤其是与药物代谢相关的影响。 Pugliese博士工作的最重要方面涉及代谢和代谢产物。这项工作有效地始于2010年初,前CADD小组成员Pugliese博士致力于成功预测代谢和类似毒品的小分子代谢物的资源,这是我们计算机辅助药物设计能力的一部分,直到他离开NCI在NCI中脱离NCI在2011年6月的最初测试和应用程序中的兴趣范围。小分子的稳定性,代谢概况和特定代谢产物适用于所有类型的药物开发,因此在旨在旨在旨在涉及NCI高兴趣的分子靶标的抗癌治疗剂的开发中非常有用,例如NCI的抗HIV药物设计项目。因此,即使在2011年夏季与国防部组进行正式合作完成后,该项目仍在继续。该项目的第一阶段包括为预测计算机工具的领域以及可用于测试这些工具并开发(更好的)预测模型的数据集组成,已成功完成。商业和免费资源都已汇编或获取。与适当出版物的比较和基准研究完成,提交并在媒体上进行。在项目的这一部分中,我们重点介绍了(预测)代谢稳定性数据,例如人肝微粒体或人肝细胞分析中的半衰期值。本文还包括对细胞色素P450相互作用(底物,抑制剂和诱导剂)的预测的小基准研究。在项目的第二个阶段,我们基于在人肝微粒体中测得的体外半衰期测定数据开发了化合物代谢稳定性的QSAR模型。使用在开源和商业程序(Knime,Gusar,Stardrop)中实现的不同统计方法和描述符集生成了各种QSAR模型。使用来自公共和商业数据源的四个不同的外部验证集比较了所获得的模型,其中包括人类中的两组较小的体内半衰期数据。最预测的模型用于预测开放NCI数据库中化合物的代谢稳定性,其结果已在NCI/CADD组Web服务器(http://cactus.nci.nih.gov)上公开可用。这项研究和上述论文均已发表在《未来药物化学》杂志上。当前的努力着重于将我们的预测能力扩大到在吸收,分布,代谢,排泄和毒性和毒性(ADME/TOX)领域的所有类型特性模型中。最近,Alexey Zakharov博士提供了一个针对物理化学特性,毒性以及某些生物学活动的预测模型,以化学活动预测器(CAP)Web服务的形式提供了一些预测模型。在该主题的背景下,CADD组成员还开发并改善了一般QSAR相关的方法和算法,以及分析(Q)SAR模型对来自特定项目的混合和匹配性数据的依赖性,既来自特定项目,又来自PubChem和Chembl等大型公共数据库。对Q(SAR)数据和方法的进一步分析已与我们的俄罗斯同事进行,其中包括几篇“混合和匹配”问题分析的论文。同样,正在为SAVI项目的分子(项目6)进行大型ADME-TOX计算。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
How to Achieve Better Results Using PASS-Based Virtual Screening: Case Study for Kinase Inhibitors.
  • DOI:
    10.3389/fchem.2018.00133
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Pogodin PV;Lagunin AA;Rudik AV;Filimonov DA;Druzhilovskiy DS;Nicklaus MC;Poroikov VV
  • 通讯作者:
    Poroikov VV
Computational tools and resources for metabolism-related property predictions. 1. Overview of publicly available (free and commercial) databases and software.
  • DOI:
    10.4155/fmc.12.150
  • 发表时间:
    2012-10
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Peach ML;Zakharov AV;Liu R;Pugliese A;Tawa G;Wallqvist A;Nicklaus MC
  • 通讯作者:
    Nicklaus MC
Improving (Q)SAR predictions by examining bias in the selection of compounds for experimental testing.
通过检查实验测试化合物选择中的偏差来改进 (Q)SAR 预测。
  • DOI:
    10.1080/1062936x.2019.1665580
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    3
  • 作者:
    Pogodin,PV;Lagunin,AA;Filimonov,DA;Nicklaus,MC;Poroikov,VV
  • 通讯作者:
    Poroikov,VV
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

MARC NICKLAUS其他文献

MARC NICKLAUS的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('MARC NICKLAUS', 18)}}的其他基金

HIV Integrase Modeling and Computer-Aided Inhibitor Deve
HIV整合酶建模和计算机辅助抑制剂开发
  • 批准号:
    7291875
  • 财政年份:
  • 资助金额:
    $ 3.37万
  • 项目类别:
HIV Integrase Modeling and Computer-Aided Inhibitor and Microbicide Development
HIV 整合酶建模以及计算机辅助抑制剂和杀菌剂开发
  • 批准号:
    10702372
  • 财政年份:
  • 资助金额:
    $ 3.37万
  • 项目类别:
Fundamentals of Ligand-Protein Interactions
配体-蛋白质相互作用的基础知识
  • 批准号:
    10014461
  • 财政年份:
  • 资助金额:
    $ 3.37万
  • 项目类别:
In Silico Screening for Cancer Targets
癌症靶标的计算机筛查
  • 批准号:
    7592817
  • 财政年份:
  • 资助金额:
    $ 3.37万
  • 项目类别:
Large Databases of Small Molecules - Drug Development Tool and Public Resource
小分子大型数据库 - 药物开发工具和公共资源
  • 批准号:
    10262724
  • 财政年份:
  • 资助金额:
    $ 3.37万
  • 项目类别:
Better Understanding and Handling of Tautomerism
更好地理解和处理互变异构
  • 批准号:
    10262460
  • 财政年份:
  • 资助金额:
    $ 3.37万
  • 项目类别:
Large Databases of Small Molecules - Drug Development Tool and Public Resource
小分子大型数据库 - 药物开发工具和公共资源
  • 批准号:
    10703018
  • 财政年份:
  • 资助金额:
    $ 3.37万
  • 项目类别:
HIV Integrase Modeling and Computer-Aided Inhibitor Development
HIV 整合酶建模和计算机辅助抑制剂开发
  • 批准号:
    7965392
  • 财政年份:
  • 资助金额:
    $ 3.37万
  • 项目类别:
Large Databases of Small Molecules - Drug Development Tool and Public Resource
小分子大型数据库 - 药物开发工具和公共资源
  • 批准号:
    10926595
  • 财政年份:
  • 资助金额:
    $ 3.37万
  • 项目类别:
Fundamentals of Ligand-Protein Interactions
配体-蛋白质相互作用的基础知识
  • 批准号:
    10926079
  • 财政年份:
  • 资助金额:
    $ 3.37万
  • 项目类别:

相似国自然基金

HIV蛋白酶抑制剂类药物抗多房棘球蚴效果及机制研究
  • 批准号:
    31802179
  • 批准年份:
    2018
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
基因工程化CRISPR/Csy4-新型抗HIV-1分子靶向药物的研发及机理研究
  • 批准号:
    81601449
  • 批准年份:
    2016
  • 资助金额:
    17.5 万元
  • 项目类别:
    青年科学基金项目
火殃簕及其近缘植物抗HIV活性二萜的药物资源研究
  • 批准号:
    21572082
  • 批准年份:
    2015
  • 资助金额:
    65.0 万元
  • 项目类别:
    面上项目
针对HIV-1和CXCR4/CCR5启动子为靶点的抗HIV/AIDS药物筛选系统的建立
  • 批准号:
    81503677
  • 批准年份:
    2015
  • 资助金额:
    18.0 万元
  • 项目类别:
    青年科学基金项目
以整合酶-LEDGF/p75相互作用为靶点的抗HIV药物高通量筛选
  • 批准号:
    81202438
  • 批准年份:
    2012
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Application of Implementation Science approaches to assess the effectiveness of Task-shifted WHO-PEN to address cardio metabolic complications in people living with HIV in Zambia
应用实施科学方法来评估任务转移的 WHO-PEN 解决赞比亚艾滋病毒感染者心脏代谢并发症的有效性
  • 批准号:
    10817964
  • 财政年份:
    2020
  • 资助金额:
    $ 3.37万
  • 项目类别:
Novel nanoparticular diagnostics for cerebral toxoplasmosis and Chagas in HIV patients living in Latin America
针对生活在拉丁美洲的艾滋病毒患者的脑弓形体病和恰加斯病的新型纳米诊断
  • 批准号:
    10405524
  • 财政年份:
    2018
  • 资助金额:
    $ 3.37万
  • 项目类别:
Fully-automated lesion characterization in ultrawide-field retinal images
超广角视网膜图像中的全自动病变表征
  • 批准号:
    9559582
  • 财政年份:
    2018
  • 资助金额:
    $ 3.37万
  • 项目类别:
Novel nanoparticular diagnostics for cerebral toxoplasmosis and Chagas in HIV patients living in Latin America
针对生活在拉丁美洲的艾滋病毒患者的脑弓形体病和恰加斯病的新型纳米诊断
  • 批准号:
    10207356
  • 财政年份:
    2018
  • 资助金额:
    $ 3.37万
  • 项目类别:
Physiologic Investigation of the Renin-Angiotensin-Aldosterone System to Understand Arterial Inflammation in HIV
通过肾素-血管紧张素-醛固酮系统的生理学研究来了解 HIV 患者的动脉炎症
  • 批准号:
    10079022
  • 财政年份:
    2017
  • 资助金额:
    $ 3.37万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了