Multi-Scale In Vitro 3D Tissue Model of Vascularized Bone-Cartilage Interactions
血管化骨-软骨相互作用的多尺度体外 3D 组织模型
基本信息
- 批准号:10259212
- 负责人:
- 金额:$ 89.4万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-21 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAcuteAnimal ModelAnimalsAnti-Inflammatory AgentsApoptosisApoptoticAutomationBasic ScienceBehaviorBiologicalBiological AssayBiologyBioreactorsBlood VesselsBone TissueCartilageCell physiologyCellsChronic DiseaseCollaborationsCommunicationConsumptionDegenerative polyarthritisDevelopmentDisease ProgressionDrug Delivery SystemsDrug usageElementsEngineeringEthicsGenomicsGoalsHumanImmuneIn VitroIndustryInflammation MediatorsInflammatoryInflammatory ResponseInfrastructureInjuryInterleukin-1 betaInterleukin-6InterventionManualsMeasuresMesenchymal Stem CellsMicrofluidic MicrochipsMicrofluidicsModelingMonitorMusculoskeletalNeurologicOutcomePatientsPharmaceutical PreparationsPharmacologic SubstancePhasePhysiologicalPlayProteomicsReactive Oxygen SpeciesResearchScientistSignal TransductionStreamSynovial FluidSystemTNF geneTestingTherapeuticTimeTissue ModelTissuesUniversitiesVascular Endothelial CellVascular Endothelial Growth FactorsVisualizationanalogarthropathiesbasebonecartilage degradationcell typeclinically relevantcommercializationcytokinedrug candidatedrug discoveryeffectiveness testingexperimental studyimprovedin vitro Modelin vivomacrophagemultidisciplinarymultiplex assaynovel therapeuticsosteochondral tissueosteogenicphase 1 studyphysiologic modelpredictive modelingresponsescreeningtissue regenerationuser-friendly
项目摘要
Abstract
Current in vitro models of vascularized bone tissues do not mimic the in vivo microenvironment
comprising of diverse cell types in communication with each other through stromal barriers. In
addition, they are hampered by lack of real-time visualization and quantitation of vasculature-
bone as well as bone-cartilage interactions. In contrast, animal models while providing useful
information are time consuming, expensive and in recent years, have increasingly raised ethical
concerns. Furthermore, animal studies provide limited understanding of mechanistic behavior
compared to well-controlled in vitro studies. Thus, there is an unmet need for an in vitro platform
for improved monitoring and analysis of vascularized bone-cartilage interactions.
In Phase I we successfully developed and demonstrated a multi-scale in vitro model comprising
of a micro scale microfluidic device and a meso scale bioreactor to mimic the in vivo conditions.
We successfully differentiated in the platform patient derived human mesenchymal stem cells
(hMSCs) towards osteogenic and chondrogenic lineages highlighting interactions with vascular
endothelial cells. Following detailed functional characterizations, we demonstrated the capability
of the platform to evaluate functionality for an anti-inflammatory therapeutic. In Phase II we will
test additional pro-inflammatory components that mimic the native osteochondral
microenvironment. We will also use our multi-scale system for (a) mechanistic understanding
and (b) therapeutic screening of candidate treatments following inflammatory insults. Finally, we
will develop the infrastructure to increase the throughput capability by multiplexing the platform
for automation.
A multi-disciplinary industry-academic partnership with expertise in microfluidics cell-based
assays and musculoskeletal biology and tissue regeneration has been assembled for successful
completion of this project. By providing an accurate, quantitative and predictive model of
physiological interactions, the developed multi-scale platform promises to establish a new
paradigm for in vitro assessment of the physiological response to therapeutics.
抽象的
目前血管化骨组织的体外模型不能模拟体内微环境
由不同类型的细胞组成,通过基质屏障相互通讯。在
此外,他们还因缺乏脉管系统的实时可视化和定量而受到阻碍 -
骨以及骨-软骨相互作用。相比之下,动物模型虽然提供了有用的
信息既耗时又昂贵,而且近年来,道德问题日益受到重视
的担忧。此外,动物研究对机械行为的理解有限
与良好对照的体外研究相比。因此,对体外平台的需求尚未得到满足
用于改进对血管化骨-软骨相互作用的监测和分析。
在第一阶段,我们成功开发并展示了一个多尺度体外模型,包括
微型微流体装置和介观尺度生物反应器来模拟体内条件。
我们在平台上成功分化了患者来源的人间充质干细胞
(hMSC)朝向成骨和软骨形成谱系,强调与血管的相互作用
内皮细胞。根据详细的功能特征,我们展示了该功能
评估抗炎治疗功能的平台。在第二阶段我们将
测试模拟天然骨软骨的其他促炎成分
微环境。我们还将使用我们的多尺度系统来进行(a)机械理解
(b) 炎症损伤后候选治疗的治疗筛选。最后,我们
将开发基础设施,通过复用平台来提高吞吐量
用于自动化。
具有基于细胞的微流体专业知识的多学科行业学术合作伙伴关系
分析、肌肉骨骼生物学和组织再生已成功完成
该项目的完成。通过提供准确、定量和预测的模型
生理相互作用,开发的多尺度平台有望建立一个新的
体外评估治疗生理反应的范例。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BALABHASKAR PRABHAKARPANDIAN其他文献
BALABHASKAR PRABHAKARPANDIAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BALABHASKAR PRABHAKARPANDIAN', 18)}}的其他基金
Multi-Scale In Vitro 3D Tissue Model of Vascularized Bone-Cartilage Interactions
血管化骨软骨相互作用的多尺度体外 3D 组织模型
- 批准号:
9376268 - 财政年份:2017
- 资助金额:
$ 89.4万 - 项目类别:
A Predictive In Vitro Model for Screening Personalized Responses to CFTR-directed Therapeutics
用于筛选 CFTR 导向治疗的个性化反应的预测体外模型
- 批准号:
9178545 - 财政年份:2016
- 资助金额:
$ 89.4万 - 项目类别:
IGF::OT::IGF SBIR PHASE II TOPIC 328: SYNVIVO-TUMOR: A PHYSIOLOGICAL 3D MODEL OF THE TUMOR MICROENVIRONMENT
IGF::OT::IGF SBIR 第二阶段主题 328:SYNVIVO-肿瘤:肿瘤微环境的生理 3D 模型
- 批准号:
9357185 - 财政年份:2016
- 资助金额:
$ 89.4万 - 项目类别:
A NOVEL MICROFLUIDIC DEVICE FOR SELECTION AND OPTIMIZATION OF DRUG DELIVERY VEHIC
用于选择和优化药物输送载体的新型微流体装置
- 批准号:
8394872 - 财政年份:2009
- 资助金额:
$ 89.4万 - 项目类别:
A NOVEL MICROFLUIDIC DEVICE FOR SELECTION AND OPTIMIZATION OF DRUG DELIVERY VEHIC
用于选择和优化药物输送载体的新型微流体装置
- 批准号:
8551636 - 财政年份:2009
- 资助金额:
$ 89.4万 - 项目类别:
A novel physiologically realistic microfluidic in-vitro blood-brain barrier model
一种新颖的生理真实微流控体外血脑屏障模型
- 批准号:
8469865 - 财政年份:2009
- 资助金额:
$ 89.4万 - 项目类别:
A Novel Microfluidic Device for Selection and Optimization of Drug Delivery Vehic
用于选择和优化药物输送载体的新型微流控装置
- 批准号:
7672007 - 财政年份:2009
- 资助金额:
$ 89.4万 - 项目类别:
A novel physiologically realistic microfluidic in-vitro blood-brain barrier model
一种新颖的生理真实微流控体外血脑屏障模型
- 批准号:
8200678 - 财政年份:2009
- 资助金额:
$ 89.4万 - 项目类别:
A Novel Physicologically Realistic Microfluidic In-vitro Blood-brain Barrier Mode
一种新颖的生理真实微流控体外血脑屏障模式
- 批准号:
7612583 - 财政年份:2009
- 资助金额:
$ 89.4万 - 项目类别:
Microfluidic Chip and Software for Microvascular Studies
用于微血管研究的微流控芯片和软件
- 批准号:
6833765 - 财政年份:2004
- 资助金额:
$ 89.4万 - 项目类别:
相似国自然基金
探索在急性呼吸窘迫综合征动物模型和患者长时间俯卧位通气过程中动态滴定呼气末正压的意义
- 批准号:82270081
- 批准年份:2022
- 资助金额:76 万元
- 项目类别:面上项目
建立脑内急性基因编辑的孤独症非人灵长类动物模型
- 批准号:
- 批准年份:2019
- 资助金额:100 万元
- 项目类别:专项基金项目
染色体大片段缺失的急性髓性白血病动物模型的构建及分析
- 批准号:81770157
- 批准年份:2017
- 资助金额:84.0 万元
- 项目类别:面上项目
树鼩异种移植模型的建立及免疫排斥机制的深入研究
- 批准号:81771721
- 批准年份:2017
- 资助金额:80.0 万元
- 项目类别:面上项目
自发性高甘油三酯急性胰腺炎大鼠模型的建立及应用
- 批准号:81570584
- 批准年份:2015
- 资助金额:85.0 万元
- 项目类别:面上项目
相似海外基金
Consequences of Perinatal Nicotine Exposure on Functional Brainstem Development
围产期尼古丁暴露对功能性脑干发育的影响
- 批准号:
10752337 - 财政年份:2023
- 资助金额:
$ 89.4万 - 项目类别:
Commercial translation of high-density carbon fiber electrode arrays for multi-modal analysis of neural microcircuits
用于神经微电路多模态分析的高密度碳纤维电极阵列的商业转化
- 批准号:
10761217 - 财政年份:2023
- 资助金额:
$ 89.4万 - 项目类别:
Understanding Chirality at Cell-Cell Junctions With Microscale Platforms
利用微型平台了解细胞与细胞连接处的手性
- 批准号:
10587627 - 财政年份:2023
- 资助金额:
$ 89.4万 - 项目类别:
Investigating cerebrovascular dysfunction and cerebral atrophy in severe traumatic brain injury
严重颅脑损伤中脑血管功能障碍和脑萎缩的调查
- 批准号:
10742569 - 财政年份:2023
- 资助金额:
$ 89.4万 - 项目类别: