Dysregulation of the unfolded protein response of the ER in nemaline myopathy
线状肌病中 ER 未折叠蛋白反应的失调
基本信息
- 批准号:10249222
- 负责人:
- 金额:$ 18.69万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:ACTA1 geneATF6 geneAffectAtrophicBTB/POZ DomainBiologyCUL3 geneCandidate Disease GeneCell DeathCell SurvivalCessation of lifeCollagenComplexDataDefectDiagnosisDiseaseDistal Muscular DystrophiesElectronsEndoplasmic ReticulumFDA approvedFibroblastsFoundationsGene MutationGenesGleanGoalsGrowthHumanHuman DevelopmentIncidenceInterventionKnock-outKnowledgeLinkLive BirthMethodologyMicroarray AnalysisMissionModelingMusMuscleMuscle FibersMuscle WeaknessMuscular AtrophyMusculoskeletal DiseasesMutationMyopathyNatural regenerationNemaline MyopathiesPathogenesisPathologicPharmaceutical PreparationsPharmacologyPlayPopulationPositioning AttributePrevalencePreventionProcollagenProteinsProteomicsPublic HealthRNA InterferenceRegulationResearchRodRoleSarcomeresSignal PathwaySignal TransductionStructureTertiary Protein StructureTestingThin FilamentUnited States National Institutes of HealthZebrafishbasecongenital myopathycraniofacialdisease-causing mutationin vivoinnovationmuscle regenerationnoveloverexpressionpostnatalprenatalresponsesatellite cellsensorskeletal disordertreatment strategyubiquitin ligase
项目摘要
Project Summary
Hallmarks of nemaline myopathy (NM) are electron dense rods in myofibers, muscle weakness, and lack of
muscle regeneration (Sanoudou et al., 2006; Wallgren-Pettersson et al., 2011). Twelve genes have been
closely linked to NM (Jungbluth et al., 2018). Despite our advanced understanding of NM that defects of the
sarcomeric thin filament cause sarcomeric weakness, it still remains unclear how these structural flaws trigger
muscle atrophy and defective muscle regeneration. There is, therefore, an urgent need to identify the
mechanisms by which the NM-linked molecules influence muscle growth and survival. Our long-term goal is to
understand roles of the endoplasmic reticulum (ER) in human development. We recently uncovered a novel
activity of CUL3-KLHL41, a NM-linked ubiquitin ligase complex, that it regulates the sensors of the unfolded
protein response (UPR) of the ER (Kim et al., 2018). In particular, the CUL3-KLHL41 complex strongly
regulates the PERK signaling pathway of the UPR in C2C12 myotubes. The UPR plays a critical role in muscle
growth/regeneration and has been implicated in congenital myopathies (Bohnert et al., 2018; Ebert et al., 2012;
Miyake et al., 2017; Zhang et al., 2002). However, UPR dysregulation has not been examined in NM until now.
Thus, we are in a unique position to reveal a new connection among CUL3, the UPR, and NM. The objective of
this application is to define how CUL3-KLHL41 and other CUL3 adaptor molecules (i.e., KLHL40, KBTBD13,
etc.) regulate the UPR in muscles. Our central hypothesis is that CUL3 adaptor molecules and possibly other
NM-linked molecules regulate muscle growth via the UPR. The rationale that underlies the proposed research
is that once we achieve the goal we will be able to provide a new concept for pathogenesis, diagnosis, and
new treatment approaches for NM. To objectively test the hypothesis, we will pursue the following specific
aims: 1) Establish the mechanism by which CUL3 regulates the UPR in myotubes; 2) Identify additional CUL3
adaptor genes whose mutations cause a myopathy in zebrafish. Under the first aim, we will identify muscle-
specific substrates of CUL3-KLHL41 that regulates the UPR in C2C12 myotubes. We will employ proven RNAi
methodology and evaluate changes in the levels of PERK. For the second aim, we will determine PERK
dysregulation in vivo in stable klhl41 knockout zebrafish lines. Additionally, we will employ RNAi methodology
to screen 51 muscle-specific putative CUL3 adaptor molecules (Deshmukh et al., 2015) for PERK regulation in
C2C12 myotubes. Top three candidates will be evaluated for PERK dysregulation in zebrafish. Our proposed
research is innovative, in our opinion, because the notion that aberrant UPR is an underlying mechanism of
pathological atrophy in NM is new and unexplored. This knowledge is significant because while defects of the
thin filaments of the sarcomere are difficult to restore, the UPR is amenable to pharmacological interventions.
Thus, our research will lay a foundation for new pharmacological interventions of NM.
项目概要
线状肌病 (NM) 的标志是肌纤维中存在电子致密杆、肌肉无力和缺乏
肌肉再生(Sanoudou 等人,2006;Wallgren-Pettersson 等人,2011)。十二个基因被
与 NM 密切相关(Jungbluth 等人,2018)。尽管我们对 NM 有深入的了解,但
肌节细丝导致肌节无力,目前仍不清楚这些结构缺陷是如何触发的
肌肉萎缩和肌肉再生缺陷。因此,迫切需要确定
NM 连接分子影响肌肉生长和存活的机制。我们的长期目标是
了解内质网 (ER) 在人类发育中的作用。最近我们发现了一本小说
CUL3-KLHL41(一种 NM 连接的泛素连接酶复合物)的活性,它调节未折叠的传感器
ER 的蛋白质反应 (UPR)(Kim 等人,2018)。特别是,CUL3-KLHL41 复合物强烈
调节 C2C12 肌管中 UPR 的 PERK 信号通路。 UPR在肌肉中起着至关重要的作用
生长/再生,并与先天性肌病有关(Bohnert et al., 2018;Ebert et al., 2012;
三宅等人,2017;张等人,2002)。然而,迄今为止,UPR 失调尚未在 NM 中得到研究。
因此,我们处于一个独特的位置来揭示 CUL3、UPR 和 NM 之间的新联系。的目标
该应用程序旨在定义 CUL3-KLHL41 和其他 CUL3 接头分子(即 KLHL40、KBTBD13、
等)调节肌肉中的 UPR。我们的中心假设是 CUL3 接头分子和可能的其他分子
NM 连接分子通过 UPR 调节肌肉生长。拟议研究的基本原理
一旦我们实现了这一目标,我们将能够为发病机制、诊断和治疗提供新的概念。
NM 的新治疗方法。为了客观地检验假设,我们将采取以下具体措施
目的:1)建立CUL3调节肌管UPR的机制; 2) 识别额外的CUL3
其突变导致斑马鱼肌病的衔接基因。在第一个目标下,我们将确定肌肉-
CUL3-KLHL41 的特定底物调节 C2C12 肌管中的 UPR。我们将采用经过验证的 RNAi
方法并评估 PERK 水平的变化。对于第二个目标,我们将确定PERK
稳定的 klhl41 敲除斑马鱼系体内的失调。此外,我们将采用 RNAi 方法
筛选 51 个肌肉特异性推定 CUL3 接头分子(Deshmukh 等人,2015),用于 PERK 调节
C2C12 肌管。将评估前三名候选人的斑马鱼 PERK 失调情况。我们提出的
我们认为,这项研究具有创新性,因为异常 UPR 是一种潜在机制的概念
NM 中的病理性萎缩是新的且未经探索的。这些知识很重要,因为虽然缺陷
肌节的细丝很难恢复,UPR 适合药物干预。
因此,我们的研究将为 NM 新的药理干预奠定基础。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
KLHL12 can form large COPII structures in the absence of CUL3 neddylation.
- DOI:10.1091/mbc.e22-08-0383
- 发表时间:2023-03-01
- 期刊:
- 影响因子:3.3
- 作者:Moretti, Tamara;Kim, Kyungho;Tuladhar, Astha;Kim, Jinoh
- 通讯作者:Kim, Jinoh
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jinoh Kim其他文献
Jinoh Kim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jinoh Kim', 18)}}的其他基金
Dysregulation of the unfolded protein response of the ER in nemaline myopathy
线状肌病中 ER 未折叠蛋白反应的失调
- 批准号:
9979481 - 财政年份:2020
- 资助金额:
$ 18.69万 - 项目类别:
Pathogenesis of diseases caused by aberrant COPII megavesicle assembly
COPII巨泡组装异常引起的疾病的发病机制
- 批准号:
8817180 - 财政年份:2015
- 资助金额:
$ 18.69万 - 项目类别:
Characterization of the interplay between SEC23A and the MAPK signaling pathway
SEC23A 和 MAPK 信号通路之间相互作用的表征
- 批准号:
8470619 - 财政年份:2012
- 资助金额:
$ 18.69万 - 项目类别:
Characterization of the interplay between SEC23A and the MAPK signaling pathway
SEC23A 和 MAPK 信号通路之间相互作用的表征
- 批准号:
8224772 - 财政年份:2012
- 资助金额:
$ 18.69万 - 项目类别:
相似国自然基金
ATF6基因启动子区组蛋白甲基化对当归多糖改善ERS致心肌缺血损伤的作用机制
- 批准号:
- 批准年份:2020
- 资助金额:35 万元
- 项目类别:地区科学基金项目
相似海外基金
Regulation of retinal homeostasis and disease by Fic-mediated AMPylation
Fic 介导的 AMPylation 对视网膜稳态和疾病的调节
- 批准号:
10741035 - 财政年份:2023
- 资助金额:
$ 18.69万 - 项目类别:
Regulation of T cell immune response in Heart Failure with Preserved Ejection Fraction
保留射血分数对心力衰竭中 T 细胞免疫反应的调节
- 批准号:
10656683 - 财政年份:2023
- 资助金额:
$ 18.69万 - 项目类别:
The role of LPCAT3 in pathogenesis of diabetic cardiomyopathy
LPCAT3在糖尿病心肌病发病机制中的作用
- 批准号:
10867671 - 财政年份:2023
- 资助金额:
$ 18.69万 - 项目类别:
Modulating retinal lipid biogenesis in diabetes for therapeutic effects
调节糖尿病视网膜脂质生物合成以获得治疗效果
- 批准号:
10503919 - 财政年份:2022
- 资助金额:
$ 18.69万 - 项目类别: