Dysregulation of the unfolded protein response of the ER in nemaline myopathy
线状肌病中 ER 未折叠蛋白反应的失调
基本信息
- 批准号:9979481
- 负责人:
- 金额:$ 16.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:ACTA1 geneATF6 geneAffectAtrophicBTB/POZ DomainBiologyCUL3 geneCandidate Disease GeneCell DeathCell SurvivalCessation of lifeCollagenComplexDataDefectDiagnosisDiseaseDistal Muscular DystrophiesElectronsEndoplasmic ReticulumFDA approvedFibroblastsFoundationsGene MutationGenesGleanGoalsGrowthHumanHuman DevelopmentIncidenceInterventionKnock-outKnowledgeLinkLive BirthMethodologyMicroarray AnalysisMissionModelingMusMuscleMuscle FibersMuscle WeaknessMuscular AtrophyMusculoskeletal DiseasesMutationMyopathyNatural regenerationNemaline MyopathiesPathogenesisPathologicPharmaceutical PreparationsPharmacologyPlayPopulationPositioning AttributePrevalencePreventionProcollagenProteinsProteomicsPublic HealthRNA InterferenceRegulationResearchRodRoleSarcomeresSignal PathwaySignal TransductionStructureTertiary Protein StructureTestingThin FilamentUnited States National Institutes of HealthZebrafishbasecongenital myopathycraniofacialdisease-causing mutationin vivoinnovationmuscle regenerationnoveloverexpressionpostnatalprenatalresponsesatellite cellsensorskeletal disordertreatment strategyubiquitin ligase
项目摘要
Project Summary
Hallmarks of nemaline myopathy (NM) are electron dense rods in myofibers, muscle weakness, and lack of
muscle regeneration (Sanoudou et al., 2006; Wallgren-Pettersson et al., 2011). Twelve genes have been
closely linked to NM (Jungbluth et al., 2018). Despite our advanced understanding of NM that defects of the
sarcomeric thin filament cause sarcomeric weakness, it still remains unclear how these structural flaws trigger
muscle atrophy and defective muscle regeneration. There is, therefore, an urgent need to identify the
mechanisms by which the NM-linked molecules influence muscle growth and survival. Our long-term goal is to
understand roles of the endoplasmic reticulum (ER) in human development. We recently uncovered a novel
activity of CUL3-KLHL41, a NM-linked ubiquitin ligase complex, that it regulates the sensors of the unfolded
protein response (UPR) of the ER (Kim et al., 2018). In particular, the CUL3-KLHL41 complex strongly
regulates the PERK signaling pathway of the UPR in C2C12 myotubes. The UPR plays a critical role in muscle
growth/regeneration and has been implicated in congenital myopathies (Bohnert et al., 2018; Ebert et al., 2012;
Miyake et al., 2017; Zhang et al., 2002). However, UPR dysregulation has not been examined in NM until now.
Thus, we are in a unique position to reveal a new connection among CUL3, the UPR, and NM. The objective of
this application is to define how CUL3-KLHL41 and other CUL3 adaptor molecules (i.e., KLHL40, KBTBD13,
etc.) regulate the UPR in muscles. Our central hypothesis is that CUL3 adaptor molecules and possibly other
NM-linked molecules regulate muscle growth via the UPR. The rationale that underlies the proposed research
is that once we achieve the goal we will be able to provide a new concept for pathogenesis, diagnosis, and
new treatment approaches for NM. To objectively test the hypothesis, we will pursue the following specific
aims: 1) Establish the mechanism by which CUL3 regulates the UPR in myotubes; 2) Identify additional CUL3
adaptor genes whose mutations cause a myopathy in zebrafish. Under the first aim, we will identify muscle-
specific substrates of CUL3-KLHL41 that regulates the UPR in C2C12 myotubes. We will employ proven RNAi
methodology and evaluate changes in the levels of PERK. For the second aim, we will determine PERK
dysregulation in vivo in stable klhl41 knockout zebrafish lines. Additionally, we will employ RNAi methodology
to screen 51 muscle-specific putative CUL3 adaptor molecules (Deshmukh et al., 2015) for PERK regulation in
C2C12 myotubes. Top three candidates will be evaluated for PERK dysregulation in zebrafish. Our proposed
research is innovative, in our opinion, because the notion that aberrant UPR is an underlying mechanism of
pathological atrophy in NM is new and unexplored. This knowledge is significant because while defects of the
thin filaments of the sarcomere are difficult to restore, the UPR is amenable to pharmacological interventions.
Thus, our research will lay a foundation for new pharmacological interventions of NM.
项目摘要
Nemaline肌病(NM)的标志是肌纤维中的电子致密杆,肌肉无力和缺乏
肌肉再生(Sanoudou等,2006; Wallgren-Pettersson等,2011)。十二个基因已经
与NM密切相关(Jungbluth等,2018)。尽管我们对NM有深入的了解,
肉瘤细丝会导致肌肉无力,目前尚不清楚这些结构缺陷如何触发
肌肉萎缩和肌肉再生。因此,迫切需要确定
NM连接分子会影响肌肉生长和存活的机制。我们的长期目标是
了解内质网(ER)在人类发展中的作用。我们最近发现了一本小说
CUL3-KLHL41的活性是NM连接的泛素连接酶复合物,它调节了展开的传感器
ER的蛋白质反应(UPR)(Kim等,2018)。特别是,Cul3-KLHL41复合物强烈
调节C2C12肌管中UPR的PERK信号通路。 UPR在肌肉中起关键作用
生长/再生并与先天性肌病有关(Bohnert等,2018; Ebert等,2012;
Miyake等人,2017年; Zhang等,2002)。但是,到现在为止,NM尚未在NM中检查UPR失调。
因此,我们处于独特的位置,可以揭示Cul3,UPR和NM之间的新联系。目的
该应用是为了定义CUL3-KLHL41和其他Cul3适配器分子如何(即KLHL40,KBTBD13,
等等)调节肌肉中的UPR。我们的中心假设是Cul3适配器分子以及其他可能
NM连接的分子通过UPR调节肌肉生长。拟议研究基础的基本原理
是,一旦我们实现了目标,我们将能够为发病机理,诊断和
NM的新治疗方法。为了客观地检验该假设,我们将追求以下特定的特定
目的:1)建立CUL3调节Myotub中UPR的机制; 2)确定其他CUL3
突变引起斑马鱼的肌病的衔接基因。在第一个目标下,我们将确定肌肉 -
调节C2C12肌管中UPR的CUL3-KLHL41的特定底物。我们将采用验证的RNAi
方法论并评估PERK水平的变化。为了第二个目标,我们将确定振作
稳定的KLHL41敲除斑马鱼线的体内失调。此外,我们将采用RNAi方法
屏幕51肌肉特异性推定的Cul3适配器分子(Deshmukh等,2015)用于PERK调节
C2C12肌管。将评估斑马鱼中的PERK失调的前三名候选人。我们提出的
在我们看来,研究具有创新性,因为异常UPR是一种基本机制的观念
NM中的病理萎缩是新的且未探索的。这些知识很重要,因为尽管
肌膜的细丝很难恢复,UPR适合药理干预措施。
因此,我们的研究将为NM的新药理干预奠定基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jinoh Kim其他文献
Jinoh Kim的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jinoh Kim', 18)}}的其他基金
Dysregulation of the unfolded protein response of the ER in nemaline myopathy
线状肌病中 ER 未折叠蛋白反应的失调
- 批准号:
10249222 - 财政年份:2020
- 资助金额:
$ 16.38万 - 项目类别:
Pathogenesis of diseases caused by aberrant COPII megavesicle assembly
COPII巨泡组装异常引起的疾病的发病机制
- 批准号:
8817180 - 财政年份:2015
- 资助金额:
$ 16.38万 - 项目类别:
Characterization of the interplay between SEC23A and the MAPK signaling pathway
SEC23A 和 MAPK 信号通路之间相互作用的表征
- 批准号:
8470619 - 财政年份:2012
- 资助金额:
$ 16.38万 - 项目类别:
Characterization of the interplay between SEC23A and the MAPK signaling pathway
SEC23A 和 MAPK 信号通路之间相互作用的表征
- 批准号:
8224772 - 财政年份:2012
- 资助金额:
$ 16.38万 - 项目类别:
相似国自然基金
ATF6基因启动子区组蛋白甲基化对当归多糖改善ERS致心肌缺血损伤的作用机制
- 批准号:
- 批准年份:2020
- 资助金额:35 万元
- 项目类别:地区科学基金项目
相似海外基金
Regulation of retinal homeostasis and disease by Fic-mediated AMPylation
Fic 介导的 AMPylation 对视网膜稳态和疾病的调节
- 批准号:
10741035 - 财政年份:2023
- 资助金额:
$ 16.38万 - 项目类别:
Regulation of T cell immune response in Heart Failure with Preserved Ejection Fraction
保留射血分数对心力衰竭中 T 细胞免疫反应的调节
- 批准号:
10656683 - 财政年份:2023
- 资助金额:
$ 16.38万 - 项目类别:
The role of LPCAT3 in pathogenesis of diabetic cardiomyopathy
LPCAT3在糖尿病心肌病发病机制中的作用
- 批准号:
10867671 - 财政年份:2023
- 资助金额:
$ 16.38万 - 项目类别:
Modulating retinal lipid biogenesis in diabetes for therapeutic effects
调节糖尿病视网膜脂质生物合成以获得治疗效果
- 批准号:
10503919 - 财政年份:2022
- 资助金额:
$ 16.38万 - 项目类别: