A microphysiological system of tendon inflammation and fibrosis for drug screening and efficacy testing
用于药物筛选和疗效测试的肌腱炎症和纤维化的微生理系统
基本信息
- 批准号:10239102
- 负责人:
- 金额:$ 75.53万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-15 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Acute and chronic tendon injuries are among the most common musculoskeletal health problems. Typically, an
injured tendon experiences fibrotic scarring that leaves the tissue mechanically compromised and prone to
debilitating adhesions that impair joint function. In a fibrotic tendon scar, the cell-cell and paracrine signaling
between inflammatory cells, such as macrophages, and tendon fibroblasts activate the latter into
fibroproliferative myofibroblasts, ultimately differentiating into a senescent phenotype. Our previous studies
using next-generation sequencing and gene set enrichment analysis mechanistically linked fibrosis and
senescence in injured mouse tendons with TGF-beta activated mTOR signaling. To further elucidate this
pathology, the goal of this proposal is to engineer a microfluidic human tendon-on-chip (hToC) system and use
it to more accurately model the biological aspects of the inflammation and fibrosis in injured tendons. In the
UG3 phase of this proposal, the chip will be fabricated featuring a multicompartmental design and microfluidic
channels to incorporate a fibroblast-seeded collagen hydrogel and simulate vascular blood flow, respectively.
Ultrathin, highly permeable, and optically transparent porous silicon membranes (SiM) will separate the
hydrogel from circulation and provide a substrate for an endothelial barrier in between. The signaling between
the fibroblasts, hydrogel-resident- and circulating-macrophages, and endothelial cells will be enabled through
nanoporous SiM (~60 nm), while a microporous SiM (~ 8 µm) will allow extravasation of circulating
macrophages and infiltration of the hydrogel under TGF-beta stimulation. To allow for a patient-centric chip,
tendon fibroblasts will be used to create the tendon hydrogel and to reprogram donor-matching iPSCs to derive
the endothelial cells and macrophages, respectively. An additional innovation will be the integration of label-
free photonic sensors into the microfluidic device to allow on-chip sensing, which has been long appreciated as
a critical, unmet need for organ-on-chip devices. The UG3 studies will use the chip to validate the role of
mTOR in the disease model and identify biologically relevant biomarkers. In the UH3 phase, we will utilize the
chip as a pre-clinical trial platform for testing efficacy and safety of FDA-approved mTOR inhibitors as potential
disease modifying drugs, and as a drug screening platform to identify and prioritize safer and more potent
inhibitors of mTOR and senescence in tendon injury for clinical trials. To successfully complete this innovative
project, we have assembled a team of accomplished experts in tendon tissue engineering and surgery,
immunology, iPSC technology, GMP cell manufacturing, nano- and micro-fabrication, sensor technology, and
high throughput screening. The proposed studies will develop a human microphysiological system to catalyze
clinical trials and accelerate drug discovery for acute and chronic tendon injuries.
急性和慢性肌腱损伤是最常见的肌肉骨骼健康问题之一。通常,一个
受伤的肌腱经历纤维化疤痕,使组织机械地妥协并容易
损害关节功能的衰弱的依从性。在纤维化肌腱疤痕中,细胞细胞和旁分泌信号传导
在炎性细胞(例如巨噬细胞)和肌腱成纤维细胞之间,将后者激活
纤维增生性肌纤维细胞,最终区分为感觉表型。我们以前的研究
使用下一代测序和基因集富集分析机械上连接的纤维化和
带有TGF-β激活的MTOR信号传导的受伤小鼠肌腱的感应。进一步阐明这一点
病理学,该提案的目的是设计微流体的人肌腱(HTOC)系统并使用
它可以更准确地模拟受伤肌腱注射和纤维化的生物学方面。在
该提案的UG3阶段,芯片将由多个剖面设计和微流体制造。
分别结合成纤维细胞种子胶原凝胶并分别模拟血管血流的通道。
Ultrathin,高度渗透性和光学透明的多孔硅膜(SIM)将分开
从循环中的水凝胶,并为两者之间的内皮屏障提供底物。之间的信号
将通过
纳米孔SIM(〜60 nm),而微孔SIM(〜8 µm)将允许循环渗出
在TGF-β刺激下,巨噬细胞和水凝胶的浸润。为了允许以患者为中心的芯片,
肌腱成纤维细胞将用于创建肌腱水凝胶并重新编程供体匹配的IPSC以得出
内皮细胞和巨噬细胞。额外的创新将是标签的整合 -
将光子传感器带入微流体设备以允许片上传感器,长期以来一直认为
对芯片机构设备的关键,未满足的需求。 UG3研究将使用芯片来验证
疾病模型中的MTOR并确定与生物学相关的生物标志物。在UH3阶段,我们将使用
芯片作为测试FDA批准MTOR抑制剂的效率和安全性的临床前试验平台
修改药物的疾病,作为识别和优先级更安全,更有效的药物筛查平台
MTOR的抑制剂和肌腱损伤的临床试验抑制剂。成功完成这一创新
项目,我们组建了一个由肌腱组织工程和手术专家组成的团队,
免疫学,IPSC技术,GMP细胞制造,纳米和微型制造,传感器技术以及
高吞吐量筛选。拟议的研究将开发人类的微生物生理系统来催化
急性和慢性肌腱损伤的临床试验和加速药物发现。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

暂无数据
数据更新时间:2024-06-01
Hani A Awad的其他基金
Training in Musculoskeletal Science: Comprehensive Training in Pain Studies
肌肉骨骼科学培训:疼痛研究综合培训
- 批准号:1085355010853550
- 财政年份:2023
- 资助金额:$ 75.53万$ 75.53万
- 项目类别:
Biomechanics, Biomaterials and Multimodal Tissue Imaging Core (BBMTI Core)
生物力学、生物材料和多模态组织成像核心(BBMTI 核心)
- 批准号:1023283610232836
- 财政年份:2022
- 资助金额:$ 75.53万$ 75.53万
- 项目类别:
Training in Musculoskeletal Science
肌肉骨骼科学培训
- 批准号:1065548410655484
- 财政年份:2020
- 资助金额:$ 75.53万$ 75.53万
- 项目类别:
Training in Musculoskeletal Science
肌肉骨骼科学培训
- 批准号:1040544710405447
- 财政年份:2020
- 资助金额:$ 75.53万$ 75.53万
- 项目类别:
A microphysiological system of tendon inflammation and fibrosis for drug screening and efficacy testing
用于药物筛选和疗效测试的肌腱炎症和纤维化的微生理系统
- 批准号:1051579010515790
- 财政年份:2020
- 资助金额:$ 75.53万$ 75.53万
- 项目类别:
A microphysiological system of tendon inflammation and fibrosis for drug screening and efficacy testing: MPS Database Engagement
用于药物筛选和功效测试的肌腱炎症和纤维化的微生理系统:MPS 数据库参与
- 批准号:1043079210430792
- 财政年份:2020
- 资助金额:$ 75.53万$ 75.53万
- 项目类别:
A microphysiological system of tendon inflammation and fibrosis for drug screening and efficacy testing
用于药物筛选和疗效测试的肌腱炎症和纤维化的微生理系统
- 批准号:1067453410674534
- 财政年份:2020
- 资助金额:$ 75.53万$ 75.53万
- 项目类别:
A microphysiological system of tendon inflammation and fibrosis for drug screening and efficacy testing
用于药物筛选和疗效测试的肌腱炎症和纤维化的微生理系统
- 批准号:1003799110037991
- 财政年份:2020
- 资助金额:$ 75.53万$ 75.53万
- 项目类别:
Project 1: Elucidating the Mechanisms of S. aureus Motility in Bone and Developing Interventions
项目 1:阐明金黄色葡萄球菌在骨中的运动机制并制定干预措施
- 批准号:1024779510247795
- 财政年份:2017
- 资助金额:$ 75.53万$ 75.53万
- 项目类别:
Elucidating the Mechanisms of S. aureus Motility in Bone and Developing Interventions
阐明金黄色葡萄球菌在骨中的运动机制并制定干预措施
- 批准号:1040296610402966
- 财政年份:2017
- 资助金额:$ 75.53万$ 75.53万
- 项目类别:
相似国自然基金
用于急性出血控制的硅酸钙复合海绵的构建及其促凝血性能和机制研究
- 批准号:32301097
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
AF9通过ARRB2-MRGPRB2介导肠固有肥大细胞活化促进重症急性胰腺炎发生MOF的研究
- 批准号:82300739
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
代谢工程化MSC胞外囊泡靶向调控巨噬细胞线粒体动力学改善急性肾损伤的作用及机制研究
- 批准号:32371426
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
DUSP2介导自噬调控气管上皮细胞炎症在急性肺损伤中的机制研究
- 批准号:82360379
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
超声射频信号神经回路策略模型定量肌肉脂肪化评估慢加急性肝衰竭预后
- 批准号:82302221
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
A decellularized porcine placenta matrix hydrogel for management of radiation-induced proctitis
用于治疗放射性直肠炎的脱细胞猪胎盘基质水凝胶
- 批准号:1059972710599727
- 财政年份:2023
- 资助金额:$ 75.53万$ 75.53万
- 项目类别:
Endothelial-Leukocyte Adhesion in CAR T Cell Treatment Associated Neurotoxicity
CAR T 细胞治疗相关神经毒性中的内皮-白细胞粘附
- 批准号:1073568110735681
- 财政年份:2023
- 资助金额:$ 75.53万$ 75.53万
- 项目类别:
Biomolecule releasing adhesive for cell-mediated labral repair
用于细胞介导的盂唇修复的生物分子释放粘合剂
- 批准号:1073633410736334
- 财政年份:2023
- 资助金额:$ 75.53万$ 75.53万
- 项目类别:
GPR4 in blood brain barrier dysfunction in brain ischemia
GPR4在脑缺血血脑屏障功能障碍中的作用
- 批准号:1052214110522141
- 财政年份:2022
- 资助金额:$ 75.53万$ 75.53万
- 项目类别:
GPR4 in blood brain barrier dysfunction in brain ischemia
GPR4在脑缺血血脑屏障功能障碍中的作用
- 批准号:1065265510652655
- 财政年份:2022
- 资助金额:$ 75.53万$ 75.53万
- 项目类别: