Genetic variation and regulatory networks: Mechanisms and complexity
遗传变异和调控网络:机制和复杂性
基本信息
- 批准号:7937675
- 负责人:
- 金额:$ 9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-09-30 至 2012-08-31
- 项目状态:已结题
- 来源:
- 关键词:Active LearningAddressAffectAlgorithmsAmino Acid SequenceAnimal ModelApoptosisAreaArginineArtsAtlasesAutomobile DrivingB-LymphocytesBehaviorBindingBiochemical ProcessBiochemistryBioinformaticsBiologicalBiological AssayBiological ModelsBiological ProcessBiological SciencesBiologyBudgetsCD4 Positive T LymphocytesCancer CenterCancer EtiologyCarbonCategoriesCell physiologyCellsCessation of lifeChromosome abnormalityChromosomesClassificationClinicalCodeCollaborationsCollectionCommunitiesComplexComputational BiologyComputational TechniqueComputational algorithmComputer AnalysisComputing MethodologiesCuesCyclic AMP-Dependent Protein KinasesCytoplasmDNA SequenceDNA Sequence AnalysisDNA-Protein InteractionDataData AnalysesData SetData SourcesDecision TreesDependencyDetectionDevelopmentDiabetes MellitusDiagnosticDimensionsDiseaseDistantDoctor of PhilosophyDouble EffectDropsERBB2 geneEnsureEnvironmentEnvironmental Risk FactorEnzymesEthanolEtiologyEventEvolutionExhibitsExperimental DesignsExperimental GeneticsFaceFacultyFeedbackFigs - dietaryFlow CytometryFluorescence MicroscopyFoundationsFungal GenomeFutureGene DeletionGene DosageGene ExpressionGene Expression RegulationGene ProteinsGenesGeneticGenetic EpistasisGenetic MarkersGenetic ModelsGenetic PolymorphismGenetic Predisposition to DiseaseGenetic TranscriptionGenetic TranslationGenetic VariationGenetsGenomeGenomic InstabilityGenomicsGenotypeGleanGlioblastomaGlucoseGoalsGrantGrowthHeartHeatingHeritabilityHumanHumidityHybridization ArrayImageImageryImmunityIndividualInstitutesInvestigationKnowledgeLabelLanguageLeadLearningLeftLettersLifeLinkLogicLungMAPK14 geneMYCN geneMachine LearningMalignant - descriptorMalignant NeoplasmsMalignant neoplasm of ovaryMammalsMapsMeasurementMeasuresMediatingMembraneMemorial Sloan-Kettering Cancer CenterMessenger RNAMetabolicMetabolic PathwayMetabolismMethionine Metabolism PathwayMethodologyMethodsMethylationMissionMitochondriaMitogen-Activated Protein Kinase KinasesModelingMolecularMolecular BiologyMolecular ProfilingMusMutationNatureNeedlesNeuroblastomaNitrogenNoiseNormal CellNuclearNutrientOpticsOrangesOrganismOutputPaperParentsPathway AnalysisPathway interactionsPatternPeptide Sequence DeterminationPerformancePharmaceutical PreparationsPhasePhenotypePhosphatidylinositol 4,5-DiphosphatePhosphorylationPhysical condensationPhysiologyPlantsPlayPoint MutationPopulationPopulation GeneticsPositioning AttributePost-Transcriptional RegulationPostdoctoral FellowProbabilityProceduresProcessProliferatingProtein BindingProteinsProtocols documentationProxyPublicationsPublished CommentPublishingQuantitative Trait LociRNARNA-Binding ProteinsRaffinoseRecruitment ActivityRegulationRegulator GenesRegulatory PathwayRelative (related person)RepressionReproducibilityResearchResearch DesignResearch PersonnelRiskRoleSaccharomyces cerevisiaeSamplingScanningScienceSeminalSeriesSignal PathwaySignal TransductionSignaling MoleculeSignaling ProteinSingle Nucleotide PolymorphismSirolimusSiteSmall Interfering RNASodium ChlorideSolutionsSorting - Cell MovementSourceSpeedSpottingsStarvationStatistical ModelsStimulusStressStructureSucroseSumSuspension substanceSuspensionsSystemT-LymphocyteTOP2A geneTechniquesTechnologyTemperatureTestingTherapeuticTimeTrainingTranscriptTranslation InitiationTreatment ProtocolsTumor-DerivedUniversitiesUntranslated RegionsUp-RegulationUpper armValidationVariantVisualWorkYeastsbasebiological systemscancer cellcancer genomecancer genomicschromatin modificationcombinatorialcomparativecomparative genomic hybridizationcomputer based statistical methodscomputer frameworkcomputerized data processingcomputerized toolscostdata integrationdensitydesigndisease phenotypeempoweredevaporationfitnessflexibilityfunctional genomicsgene functiongenetic analysisgenetic linkage analysisgenetic variantgenome wide association studygenome-widegraphical user interfaceimprovedinnovationinorganic phosphateinsightinterdisciplinary approachinterestleukemialoss of functionmRNA ExpressionmRNA Transcript DegradationmRNA decappingmalignant breast neoplasmmedical schoolsmembermethod developmentmolecular domainmutantnovelnovel strategiesoutcome forecastpressureprognosticprogramspromoterprotein Bprotein expressionprototypereconstructionresearch studyresponsesegregationskillsstatisticssuccesssugarsymposiumtooltraittranscription factortumortumor growthtumor progressiontumorigenesisuser-friendlyyeast genetics
项目摘要
The focus of the proposed research is to understand the effect of sequence variation on
the function of molecular networks. We will develop computational algorithms that
integrate genotype, gene expression and phenotype data to construct models that
describe how sequence variation perturbs the regulatory network, alters signal processing
and is manifested in cellular phenotypes.
Our approach is based on Bayesian networks, a framework we pioneered for the
reconstruction of molecular networks from high-throughput data. We recently applied this
framework to develop the Geronemo algorithm which we applied to yeast and uncovered a
novel relationship between the sequence specific RNA factor PUF3 and P-Bodies, as well
as a Single Nucleotide Polymorphism (SNP) in MKT1 that modulates this relationship.
Both novel findings were experimentally validated subsequent to their discovery.
Our approach is based on the complementary duality between genetic sequence and
functional genomics. A significant influence of genotype on phenotype is induced by fine
tuned perturbations to the complex regulatory network that governs a cell's activity.
Variation in the expression of a single gene is more tractable and can be used as an
intermediary to help associate genetic factors to the more complex downstream changes
in phenotype in a hierarchical fashion. Conversely, DNA sequence polymorphisms are
effective perturb-agens which provide a rich source of variation to help uncover regulatory
relations in the molecular network as well as direct their causality.
We will develop our methods using a large collection of highly variable yeast strains, for
which we have generated robust quantitative growth curves under numerous
environmental conditions. The methodologies piloted in yeast will be extended to genotype
and gene expression data derived from tumor samples to attempt to elucidate the multiple
genetic factors that drive their proliferation. These tools will be made publicly available,
including a friendly graphical user interface and visualization.
本研究的重点是了解序列变异对
分子网络的功能。我们将开发计算算法
整合基因型、基因表达和表型数据来构建模型
描述序列变异如何扰乱调节网络,改变信号处理
并表现在细胞表型中。
我们的方法基于贝叶斯网络,这是我们为
从高通量数据重建分子网络。我们最近应用了这个
开发 Geronemo 算法的框架,我们将其应用于酵母并发现了
序列特异性 RNA 因子 PUF3 和 P-Bodies 之间的新关系
作为 MKT1 中调节这种关系的单核苷酸多态性 (SNP)。
这两项新发现均在发现后得到了实验验证。
我们的方法基于基因序列和基因序列之间的互补二元性
功能基因组学。基因型对表型的显着影响是由精细诱导的
调整对控制细胞活动的复杂调节网络的扰动。
单个基因表达的变异更容易处理,可以用作
帮助将遗传因素与更复杂的下游变化联系起来的中介
以分层方式表现型。相反,DNA序列多态性是
有效的扰动因素,提供丰富的变异来源,帮助发现监管
分子网络中的关系并指导它们的因果关系。
我们将使用大量高度可变的酵母菌株来开发我们的方法,
我们在众多的条件下生成了稳健的定量增长曲线
环境条件。在酵母中试验的方法将扩展到基因型
和来自肿瘤样本的基因表达数据试图阐明多重
驱动其增殖的遗传因素。这些工具将公开提供,
包括友好的图形用户界面和可视化。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Dana Pe'er其他文献
Dana Pe'er的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Dana Pe'er', 18)}}的其他基金
Shared Resource Core: Computational and technology development for spatial expression analysis.
共享资源核心:空间表达分析的计算和技术开发。
- 批准号:
10525196 - 财政年份:2022
- 资助金额:
$ 9万 - 项目类别:
Shared Resource Core: Computational and technology development for spatial expression analysis.
共享资源核心:空间表达分析的计算和技术开发。
- 批准号:
10705800 - 财政年份:2022
- 资助金额:
$ 9万 - 项目类别:
Molecular, Cellular, and Tissue Characterization Unit
分子、细胞和组织表征单元
- 批准号:
10477056 - 财政年份:2018
- 资助金额:
$ 9万 - 项目类别:
Molecular, Cellular, and Tissue Characterization Unit
分子、细胞和组织表征单元
- 批准号:
10249192 - 财政年份:2018
- 资助金额:
$ 9万 - 项目类别:
Molecular, Cellular, and Tissue Characterization Unit
分子、细胞和组织表征单元
- 批准号:
10001475 - 财政年份:2018
- 资助金额:
$ 9万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Time toxicity of cancer: the time demands of cancer-related activities and their impact on well-being and quality of life
癌症的时间毒性:癌症相关活动的时间需求及其对福祉和生活质量的影响
- 批准号:
10583723 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Characterizing Elder Mistreatment Among Older Adults with Dementia
患有痴呆症的老年人中虐待老年人的特征
- 批准号:
10590808 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Development of a Pharmacodynamic Biomarker of Opioid Antagonism in Adolescents with Eating Disorders
青少年饮食失调阿片类药物拮抗药效生物标志物的开发
- 批准号:
10662801 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别:
Association of Phenotypes and Genotype with Treatment Response in Psoriatic Arthritis
表型和基因型与银屑病关节炎治疗反应的关联
- 批准号:
10723557 - 财政年份:2023
- 资助金额:
$ 9万 - 项目类别: