Yeast cell wall damage response pathways
酵母细胞壁损伤反应途径
基本信息
- 批准号:7761039
- 负责人:
- 金额:$ 15.55万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-02-01 至 2013-01-31
- 项目状态:已结题
- 来源:
- 关键词:AdhesionsAnabolismAntifungal AgentsApplications GrantsAreaBiomedical ResearchCandida albicansCandida glabrataCaspofunginCell WallCell membraneCollaborationsDevelopmentEpitopesEventExtramural Funding MechanismsFosteringFundingFunding AgencyFutureGene ExpressionGene TargetingGenesGenetic TechniquesGray unit of radiation doseHumanInfectious Diseases ResearchLicensingMediatingMembrane ProteinsMicrobial BiofilmsModelingMolecular GeneticsMonitorMutationOrthologous GenePathogenesisPathogenicityPathway interactionsPatientsPhosphorylationPilot ProjectsPopulationProcessProtein KinaseProteinsResearchRoleSignal PathwaySignal TransductionStressStress Response SignalingStudentsTestingTherapeuticUp-RegulationWorkYeast Model SystemYeastsbasebiological adaptation to stresscandidemiacareercollegecostdimorphismenvironmental changegenetic analysisinhibitor/antagonistinnovationinterestmeetingsmortalitymutantnovelpathogenprogramspublic health relevancereceptorresistance mechanismresponsetranscription factor
项目摘要
DESCRIPTION (provided by applicant): Candida albicans is the 4th most common nosocomial infective agent in the US alone with a high mortality rate amongst candidemia patients. Signaling pathways control processes critical for adaptation, survival, and pathogenesis. Our broad interest is to understand the roles of signaling pathways in C. albicans survival and pathogenesis. Our objective in this proposal is to determine the signaling mechanism underlying the Psk1-Sko1 cell wall damage response to antifungal drugs. Expression of the transcription factor Sko1 is increased following treatment with the cell wall synthesis inhibitor caspofungin, a recently licensed antifungal drug with a novel target. This increase is dependent on protein kinase Psk1, and culminates with the upregulation of cell wall biosynthesis genes. Our most recent findings show that transcription factor Rlm1 controls Sko1 expression upon cell wall damage. Also, we found that strains containing mutations to the plasma membrane receptor Hgt9 are hypersensitive to caspofungin. Thus, our central hypothesis is that increased SKO1 expression following cell wall damage is caused by Psk1 phosphorylation of transcription factor Rlm1, and activation of this pathway occurs through plasma membrane receptors detecting cell wall perturbation. To test our hypothesis, we propose the following specific aims: 1) To determine the role of transcription factor Rlm1 in the Psk1-Sko1 cell wall damage response; and 2) To determine the upstream signaling components in the Psk1-Sko1 cell wall damage response. This pilot proposal is innovative in the identification of a novel adaptive mechanism to cell wall damage that is unique in C. albicans. Further, it will advance our understanding of the response to a new class of antifungal, which may allow us to anticipate resistance mechanisms and identify synergistic inhibitors. Funding of this pilot proposal will expand research at John Jay College and introduce biomedical research to a student population that currently lacks opportunities in this critical area.
PUBLIC HEALTH RELEVANCE: Candida albicans is the major fungal pathogen of humans. C. albicans is the 4th most common nosocomial infective agent in the US alone with a high mortality rate amongst candidemia patients. Signaling pathways are critical for adaptation, survival, and pathogenesis. This proposal is relevant as we will determine the signaling mechanisms that govern the response to antifungal drugs.
描述(由申请人提供):白色念珠菌是美国第四大最常见的医院感染病原体,在念珠菌血症患者中死亡率很高。信号通路控制对适应、生存和发病机制至关重要的过程。我们广泛的兴趣是了解信号通路在白色念珠菌生存和发病机制中的作用。我们本提案的目标是确定抗真菌药物导致 Psk1-Sko1 细胞壁损伤反应的信号传导机制。使用细胞壁合成抑制剂卡泊芬净(一种最近获得许可的具有新靶点的抗真菌药物)治疗后,转录因子 Sko1 的表达增加。这种增加依赖于蛋白激酶 Psk1,并随着细胞壁生物合成基因的上调而达到顶峰。我们最新的研究结果表明,转录因子 Rlm1 在细胞壁损伤时控制 Sko1 的表达。此外,我们发现含有质膜受体 Hgt9 突变的菌株对卡泊芬净过敏。因此,我们的中心假设是,细胞壁损伤后 SKO1 表达增加是由转录因子 Rlm1 的 Psk1 磷酸化引起的,并且该途径的激活是通过检测细胞壁扰动的质膜受体发生的。为了检验我们的假设,我们提出以下具体目标:1)确定转录因子Rlm1在Psk1-Sko1细胞壁损伤反应中的作用; 2) 确定 Psk1-Sko1 细胞壁损伤反应中的上游信号成分。该试点提案在识别白色念珠菌独特的细胞壁损伤的新型适应性机制方面具有创新性。此外,它将增进我们对新型抗真菌药物反应的理解,这可能使我们能够预测耐药机制并识别协同抑制剂。该试点提案的资助将扩大约翰杰伊学院的研究范围,并向目前在这一关键领域缺乏机会的学生群体介绍生物医学研究。
公共卫生相关性:白色念珠菌是人类的主要真菌病原体。仅在美国,白色念珠菌就是第四大最常见的医院感染,在念珠菌血症患者中死亡率很高。信号通路对于适应、生存和发病机制至关重要。该提议是相关的,因为我们将确定控制抗真菌药物反应的信号机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jason Malcolm Rauceo其他文献
Jason Malcolm Rauceo的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jason Malcolm Rauceo', 18)}}的其他基金
Control of Mitochondrial Function by SPFH Proteins in Pathogenic Yeast
病原酵母中 SPFH 蛋白对线粒体功能的控制
- 批准号:
10674870 - 财政年份:2021
- 资助金额:
$ 15.55万 - 项目类别:
Control of Mitochondrial Function by SPFH Proteins in Pathogenic Yeast
病原酵母中 SPFH 蛋白对线粒体功能的控制
- 批准号:
10332017 - 财政年份:2021
- 资助金额:
$ 15.55万 - 项目类别:
Analysis of the Candida albicans adhesin Als5p
白色念珠菌粘附素 Als5p 的分析
- 批准号:
6942241 - 财政年份:2003
- 资助金额:
$ 15.55万 - 项目类别:
Analysis of the Candida albicans adhesin Als5p
白色念珠菌粘附素 Als5p 的分析
- 批准号:
6741334 - 财政年份:2003
- 资助金额:
$ 15.55万 - 项目类别:
Analysis of the Candida albicans adhesin Als5p
白色念珠菌粘附素 Als5p 的分析
- 批准号:
6807048 - 财政年份:2003
- 资助金额:
$ 15.55万 - 项目类别:
相似国自然基金
GGPP变构激活FBP1偶联葡萄糖代谢和胆固醇合成途径抑制NAFL-NASH发展的机制研究
- 批准号:32371366
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于T细胞代谢重编程研究二十五味儿茶丸通过促进亚精胺合成纠正Treg/Th17失衡治疗类风湿关节炎的作用机制
- 批准号:82360862
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
可代谢调控弱碱性钠盐纳米材料的控制合成及其在增强癌症免疫治疗中的应用
- 批准号:52372273
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
拟南芥UBC34通过介导ABA的合成与代谢调控盐胁迫应答的机制研究
- 批准号:32300248
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
葡萄糖神经酰胺合成酶GCS调控植物磷代谢的分子机制研究
- 批准号:32300234
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目