Control of Mitochondrial Function by SPFH Proteins in Pathogenic Yeast

病原酵母中 SPFH 蛋白对线粒体功能的控制

基本信息

项目摘要

The mitochondrion is the major energy-producing organelle of the cell and coordinates key activities such as signaling, apoptosis, and phospholipid synthesis. These processes are essential for survival and pathogenesis of Candida albicans, the most common fungal pathogen in humans. C. albicans respiration occurs via three distinct pathways compared to vertebrates and is associated with virulence properties such as morphogenesis and cell wall synthesis. Our long-term research goal is to understand the cellular and molecular mechanisms that govern C. albicans survival in response to environmental stress and antifungal drugs. We previously discovered that gene classes involved mitochondrial functions are highly transcribed in response to osmotic and cell wall stress, and the gene SLP3 (stomatin like protein 3) was significantly upregulated. SLP3 is a member of the conserved SPFH (Stomatin, Prohibitin, Flotillin, HflK/HflC) protein superfamily. In eukaryotes, SPFH proteins are required for essential mitochondrial processes such as respiration, mitophagy, and apoptosis and mediate pathogenicity in several parasites. Our objective in this proposal is to determine the role of the C. albicans SPFH protein family in mitochondrial function. We were the first to demonstrate that Slp3p overproduction disrupted mitochondrial membrane potential and triggered apoptotic-like death specifically following prolonged exposure to oxidative stress. However, the molecular function Slp3p remains unknown. Thus, our central hypothesis is that C. albicans SPFH proteins form membrane complexes to coordinate mitochondrial function. This hypothesis is based upon observations with mammalian SPFH proteins and our published and preliminary findings. Human SPFH complexes appear as punctate foci when viewed using fluorescence microscopy. We found that Slp3p form puncta at the plasma membrane. Further, we identified a mitochondrial targeting signal in Slp2p, Phb1p and Phb2p, and our Slp2p-GFP fusion protein formed mitochondrial puncta. We will utilize a high-throughput molecular genetic and cellular approach that is cost-effective and time-saving to determine SPFH protein localization, protein complex composition, cellular function, and role in C. albicans infection. We will create SPFH-GFP fusion proteins and use fluorescence microscopy to determine cellular localization. We will construct SPFH-epitope-tagged strains and perform Co-IP and LC-MS/MS analyses to identify putative SPFH protein binding partners. We will create SPFH mutants via CRISPR-Cas9 genome editing and phenotypically characterize mutant strains in growth and cellular assays. We will examine SPFH function in C. albicans pathogenesis using a novel invertebrate infection system. Our findings will address a poorly understood area in C. albicans biology and provide a model for studying SPFH proteins in pathogenic fungi. This proposal is innovative as we will characterize the SPFH family in the context of a critical, yet poorly understood area in C albicans biology: the molecular framework underlying mitochondrial function.
线粒体是细胞的主要产能细胞器,并协调关键活动 作为信号,凋亡和磷脂合成。这些过程对于生存至关重要 白色念珠菌的发病机理,白色念珠菌是人类最常见的真菌病原体。白色念珠菌呼吸 与脊椎动物相比,通过三种不同的途径发生,并且与毒力特性有关 作为形态发生和细胞壁合成。我们的长期研究目标是了解细胞和 响应环境应激和抗真菌的分子机制 毒品。我们先前发现,涉及线粒体功能的基因类是高度转录的 响应渗透和细胞壁应力,基因SLP3(类似烟素蛋白3)显着 上调。 SLP3是保守的SPFH(臭虫,禁止素,氟替肽,HFLK/HFLC)蛋白的成员 超家族。在真核生物中,SPFH蛋白是必需的线粒体过程(例如 呼吸,线粒体和凋亡并介导了几种寄生虫的致病性。我们的目标 建议是确定白色念珠菌SPFH蛋白家族在线粒体功能中的作用。我们是 第一个证明Slp3P过度生产破坏了线粒体膜电位和 长时间暴露于氧化应激之后,触发了凋亡样死亡。但是, 分子功能SLP3P仍然未知。因此,我们的中心假设是白色念珠菌SPFH蛋白 形成膜复合物以坐标线粒体功能。该假设基于 哺乳动物SPFH蛋白以及我们发表的初步发现的观察结果。人类SPFH 当使用荧光显微镜查看时,复合物作为点状灶。我们发现Slp3P表格 质膜上的点。此外,我们在SLP2P,PHB1P和 PHB2P,我们的SLP2P-GFP融合蛋白形成线粒体点。我们将使用高通量 具有成本效益且节省时间的分子遗传和细胞方法,以确定SPFH蛋白 定位,蛋白质复合物组成,细胞功能以及白色念珠菌感染中的作用。我们将创建 SPFH-GFP融合蛋白并使用荧光显微镜确定细胞定位。我们将 构建SPFH - ePitope标记的菌株并执行Co-IP和LC-MS/MS分析以识别推定 SPFH蛋白结合伴侣。我们将通过CRISPR-CAS9基因组编辑创建SPFH突变体,然后 表型在生长和细胞测定中表征突变株。我们将检查SPFH功能 C.白色念珠菌发病机理使用新型无脊椎动物感染系统。我们的发现将解决一个糟糕的问题 了解白色念珠菌生物学的区域,并提供了研究致病真菌中SPFH蛋白的模型。 该提议具有创新性 在白色疾病生物学中理解的区域:线粒体功能的分子框架。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Triazine-Based Small Molecules: A Potential New Class of Compounds in the Antifungal Toolbox.
  • DOI:
    10.3390/pathogens12010126
  • 发表时间:
    2023-01-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Conrad KA;Kim H;Qasim M;Djehal A;Hernday AD;Désaubry L;Rauceo JM
  • 通讯作者:
    Rauceo JM
The SPFH Protein Superfamily in Fungi: Impact on Mitochondrial Function and Implications in Virulence.
  • DOI:
    10.3390/microorganisms9112287
  • 发表时间:
    2021-11-03
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Heredia MY;Rauceo JM
  • 通讯作者:
    Rauceo JM
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jason Malcolm Rauceo其他文献

Jason Malcolm Rauceo的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jason Malcolm Rauceo', 18)}}的其他基金

Control of Mitochondrial Function by SPFH Proteins in Pathogenic Yeast
病原酵母中 SPFH 蛋白对线粒体功能的控制
  • 批准号:
    10332017
  • 财政年份:
    2021
  • 资助金额:
    $ 12.18万
  • 项目类别:
Pathogenic Yeast Stress Signaling Networks
致病性酵母应激信号网络
  • 批准号:
    9058118
  • 财政年份:
    2015
  • 资助金额:
    $ 12.18万
  • 项目类别:
Yeast cell wall damage response pathways
酵母细胞壁损伤反应途径
  • 批准号:
    8016672
  • 财政年份:
    2010
  • 资助金额:
    $ 12.18万
  • 项目类别:
Yeast cell wall damage response pathways
酵母细胞壁损伤反应途径
  • 批准号:
    7761039
  • 财政年份:
    2010
  • 资助金额:
    $ 12.18万
  • 项目类别:
Yeast cell wall damage response pathways
酵母细胞壁损伤反应途径
  • 批准号:
    8214563
  • 财政年份:
    2010
  • 资助金额:
    $ 12.18万
  • 项目类别:
Analysis of the Candida albicans adhesin Als5p
白色念珠菌粘附素 Als5p 的分析
  • 批准号:
    6942241
  • 财政年份:
    2003
  • 资助金额:
    $ 12.18万
  • 项目类别:
Analysis of the Candida albicans adhesin Als5p
白色念珠菌粘附素 Als5p 的分析
  • 批准号:
    6741334
  • 财政年份:
    2003
  • 资助金额:
    $ 12.18万
  • 项目类别:
Analysis of the Candida albicans adhesin Als5p
白色念珠菌粘附素 Als5p 的分析
  • 批准号:
    6807048
  • 财政年份:
    2003
  • 资助金额:
    $ 12.18万
  • 项目类别:

相似海外基金

The Impact of SARS-CoV-2 Immune Dysregulation on Antifungal Immunity
SARS-CoV-2 免疫失调对抗真菌免疫的影响
  • 批准号:
    10658355
  • 财政年份:
    2023
  • 资助金额:
    $ 12.18万
  • 项目类别:
Long-acting formulations of griseofulvin for ocular neovascularization therapy
用于眼部新生血管治疗的灰黄霉素长效制剂
  • 批准号:
    10682059
  • 财政年份:
    2023
  • 资助金额:
    $ 12.18万
  • 项目类别:
Improving granulocyte transfusion in neutropenia-related infections
改善中性粒细胞减少相关感染的粒细胞输注
  • 批准号:
    10494384
  • 财政年份:
    2022
  • 资助金额:
    $ 12.18万
  • 项目类别:
Conservation of programmed cell death across species
跨物种程序性细胞死亡的保守性
  • 批准号:
    10640365
  • 财政年份:
    2022
  • 资助金额:
    $ 12.18万
  • 项目类别:
Improving granulocyte transfusion in neutropenia-related infections
改善中性粒细胞减少相关感染的粒细胞输注
  • 批准号:
    10682602
  • 财政年份:
    2022
  • 资助金额:
    $ 12.18万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了