Establishing Common Coordinate Framework for Quantitative Cell Census in Developing Mouse Brains
建立小鼠大脑发育中定量细胞普查的通用坐标框架
基本信息
- 批准号:10088508
- 负责人:
- 金额:$ 379.79万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-15 至 2024-09-14
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAcuteAddressAdoptedAdultAgeAnatomyAnimal ModelApoptosisArchitectureAtlasesBRAIN initiativeBirthBrainBrain DiseasesBrain MappingBrain regionC57BL/6 MouseCell DensityCell NucleusCellsCensusesCessation of lifeCommunitiesComplexComputer AnalysisCoupledCre driverDataDevelopmentDiseaseEmbryoEmbryologyFluorescence MicroscopyGene ExpressionGeneticGoalsHistologicImageImaging technologyIn SituKnowledgeLabelLectinLightLinkLocationMagnetic Resonance ImagingMapsMethodsMicroscopyModernizationMorphologyMusNeuroanatomyNeuronsNeurosciencesOntologyParvalbuminsPatternQuantitative EvaluationsReporterReproducibilityResolutionResourcesScientistSomatostatinStainsTechnologyThree-Dimensional ImageThree-Dimensional ImagingTimeTissuesTrainingVasoactive Intestinal PeptideVisualizationanalysis pipelinebasebrain cellcell typedata integrationdata resourcedata sharingimprovedindexingmicroscopic imagingmodel developmentmouse modelmultimodalitymyelinationneural circuitneurodevelopmentneuroinformaticsnovelpostnatalprogramsskillsspatiotemporalthree dimensional structure
项目摘要
Abstract
Brain development is characterized by a diverse set of cell types that are born and connected into rapidly growing
complex 3D structures across time. Quantitative understanding of cell type composition and distribution in
different brain regions provides fundamental knowledge about the building blocks of the brain and serves as an
essential baseline with which to assess changes that may occur in brain disorders. The importance of this
information is reflected by the significant effort among the neuroscience community, including the creation of the
BRAIN Initiative Cell Census Network, to improve our understanding of cell type compositions across different
brain regions in the adult mouse brain. These efforts have been made possible and accelerated by technological
advances in high-resolution 3D imaging coupled with computational analysis methods that can reveal cell type
arrangement in the brain with unprecedented detail. For example, we developed a quantitative brain mapping
method to uncover the spatial arrangement of GABAergic neuron subtypes in the adult mouse brain. For the
adult mouse brain, the Allen Common Coordinate Framework (CCF) currently serves as the standard atlas
resource with which to map and integrate results from different studies. The neuroscience community, on the
other hand, does not have similar CCFs for the developing mouse brain. The lack of developmental CCFs
significantly hinders progress on cell type mapping of the developing mouse brain by limiting the reproducibility
and integration of data from different studies. To address this deficiency, we have assembled a highly synergistic,
multi-institutional team with complementary skill sets to create developmental CCFs with associated ontology
and true 3D anatomical labels while also demonstrating the application of our CCFs by generating quantitative
mappings of GABAergic neurons in the developing mouse brain. Toward this end, we will first utilize MRI and
light sheet fluorescent microscopy (LSFM) to develop high-resolution developmental CCFs at seven different
developmental time points (E11.5, E13.5, E15.5, E18.5, P4, P14, and P56) with different cellular features,
including total cell density, myelination, and neurovasculature. Second, we will create true 3D anatomical labels
for the CCFs based on cellular and gene expression information, and build a comprehensive ontology that will
allow anatomical region changes to be linked across development and maturation. Lastly, we will generate a
cellular-resolution quantitative map of GABAergic neuronal subtypes using tissue clearing and LSFM imaging in
developing mouse brains, which will serve as a substantial data resource to accelerate developmental
neuroscience discovery. The successful completion of this project will enable a broad field of scientists to
leverage modern brain mapping technologies more effectively in studying the developing mouse brain.
抽象的
大脑发育的特点是一系列不同的细胞类型,这些细胞类型诞生并连接成快速生长的细胞。
跨越时间的复杂 3D 结构。定量了解细胞类型组成和分布
不同的大脑区域提供了有关大脑构建模块的基础知识,并充当
评估大脑疾病可能发生的变化的基本基线。这一点的重要性
信息反映在神经科学界的巨大努力中,包括创建
BRAIN Initiative 细胞普查网络,以提高我们对不同细胞类型组成的了解
成年小鼠大脑中的大脑区域。这些努力是通过技术得以实现并加速的
高分辨率 3D 成像技术的进步与可揭示细胞类型的计算分析方法相结合
大脑中的排列方式前所未有的详细。例如,我们开发了定量大脑图谱
揭示成年小鼠大脑中 GABA 能神经元亚型空间排列的方法。对于
成年小鼠大脑,艾伦通用坐标框架(CCF)目前作为标准图集
用于绘制和整合不同研究结果的资源。神经科学界,关于
另一方面,对于发育中的小鼠大脑来说,并没有类似的 CCF。缺乏发展性CCF
通过限制重现性,严重阻碍发育中小鼠大脑细胞类型图谱的进展
以及来自不同研究的数据的整合。为了解决这一缺陷,我们组建了一个高度协同的、
具有互补技能的多机构团队,可创建具有相关本体的开发 CCF
和真正的 3D 解剖标签,同时还通过生成定量数据来展示我们的 CCF 的应用
发育中的小鼠大脑中 GABA 能神经元的图谱。为此,我们将首先利用 MRI
光片荧光显微镜 (LSFM) 用于开发七种不同的高分辨率发育 CCF
具有不同细胞特征的发育时间点(E11.5、E13.5、E15.5、E18.5、P4、P14 和 P56),
包括总细胞密度、髓鞘形成和神经血管系统。其次,我们将创建真正的 3D 解剖标签
基于细胞和基因表达信息的CCF,并构建一个全面的本体论
允许解剖区域的变化在发育和成熟过程中联系起来。最后,我们将生成一个
使用组织透明化和 LSFM 成像绘制 GABA 能神经元亚型的细胞分辨率定量图
开发小鼠大脑,这将作为加速发育的重要数据资源
神经科学发现。该项目的成功完成将使广大科学家能够
更有效地利用现代大脑图谱技术来研究发育中的小鼠大脑。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JAMES C GEE其他文献
JAMES C GEE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JAMES C GEE', 18)}}的其他基金
Multi-scale and multi-modality imaging of neuropathology in VCID
VCID 神经病理学的多尺度、多模态成像
- 批准号:
10812034 - 财政年份:2023
- 资助金额:
$ 379.79万 - 项目类别:
International Conference on Information Processing in Medical Imaging 2019
2019年医学影像信息处理国际会议
- 批准号:
9760660 - 财政年份:2019
- 资助金额:
$ 379.79万 - 项目类别:
ITK-Lung: A Software Framework for Lung Image Processing and Analysis
ITK-Lung:肺部图像处理和分析的软件框架
- 批准号:
9325271 - 财政年份:2017
- 资助金额:
$ 379.79万 - 项目类别:
A Community Resource for Single Cell Data in the Brain
大脑中单细胞数据的社区资源
- 批准号:
9415946 - 财政年份:2017
- 资助金额:
$ 379.79万 - 项目类别:
SHAPE OPTIMIZING DIFFEOMORPHISMS FOR COMPUTATIONAL BIOLOGY
计算生物学的形状优化微分形
- 批准号:
8363477 - 财政年份:2011
- 资助金额:
$ 379.79万 - 项目类别:
相似国自然基金
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Tenascin-X对急性肾损伤血管内皮细胞的保护作用及机制研究
- 批准号:82300764
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
ACSS2介导的乙酰辅酶a合成在巨噬细胞组蛋白乙酰化及急性肺损伤发病中的作用机制研究
- 批准号:82370084
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
KIF5B调控隧道纳米管介导的线粒体转运对FLT3-ITD阳性急性髓系白血病的作用机制
- 批准号:82370175
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
PHF6突变通过相分离调控YTHDC2-m6A-SREBP2信号轴促进急性T淋巴细胞白血病发生发展的机制研究
- 批准号:82370165
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Mechanical signaling through the nuclear membrane in lung alveolar health
通过核膜的机械信号传导影响肺泡健康
- 批准号:
10677169 - 财政年份:2023
- 资助金额:
$ 379.79万 - 项目类别:
p16INK4a+ fibroblasts regulate epithelial regeneration after injury in lung alveoli through the SASP
p16INK4a成纤维细胞通过SASP调节肺泡损伤后的上皮再生
- 批准号:
10643269 - 财政年份:2023
- 资助金额:
$ 379.79万 - 项目类别:
3D Bioprinting of a Bioelectric Cell Bridge for Re-engineering Cardiac Conduction
用于重新设计心脏传导的生物电细胞桥的 3D 生物打印
- 批准号:
10753836 - 财政年份:2023
- 资助金额:
$ 379.79万 - 项目类别:
Genome Instability Induced Anti-Tumor Immune Responses
基因组不稳定性诱导的抗肿瘤免疫反应
- 批准号:
10626281 - 财政年份:2023
- 资助金额:
$ 379.79万 - 项目类别:
Commercial translation of high-density carbon fiber electrode arrays for multi-modal analysis of neural microcircuits
用于神经微电路多模态分析的高密度碳纤维电极阵列的商业转化
- 批准号:
10761217 - 财政年份:2023
- 资助金额:
$ 379.79万 - 项目类别: