A System to Optically Determine the Absolute Membrane Potential in Human iPSCD Cardiac Myocytes
光学测定人 iPSCD 心肌细胞绝对膜电位的系统
基本信息
- 批准号:10081467
- 负责人:
- 金额:$ 25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-09 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsAcuteAlgorithmsBiologicalBiological AssayBrugada syndromeCalibrationCardiacCardiac Electrophysiologic TechniquesCardiac MyocytesCell membraneCellsChemicalsComplexComputer softwareConnective TissueCultured CellsDNA Sequence AlterationDataDetectionDevelopmentDevicesDiseaseDoctor of PhilosophyDyesElectrodesElectronicsElectrophysiology (science)EndotheliumFibroblastsFluorescenceGenerationsGenetic studyGoalsHealthHeterogeneityHourHumanImageIn VitroIndustryKnowledgeLegal patentLightingManualsMeasurementMeasuresMechanicsMembraneMembrane PotentialsMethodsMicroscopeModelingMolecularMolecular BiologyMonitorNatureNoiseOptical MethodsOpticsOrganPerformancePharmaceutical PreparationsPhasePhototoxicityPostdoctoral FellowPreparationPropertyProtocols documentationQuality ControlRecording of previous eventsReportingReproducibilityResearchResearch PersonnelRestSafetySignal TransductionSourceStandardizationStudy SubjectSyndromeSystemTechniquesTestingTimeToxic effectValidationWorkbasecell typedesigndetectordrug candidatedrug developmentelectrical measurementexperimental studyfluorescence microscopeinduced pluripotent stem celllight intensitymedication safetynovelnovel therapeuticsoptical imagingoptogeneticspatch clamppre-clinicalquantumscreeningsensorsignal processingsoftware developmentstem cellssystems researchtemporal measurementtoolvirtualvoltagevoltage sensitive dye
项目摘要
Optical assays are a powerful tool in cellular electrophysiology. However, currently-available approaches have not
reached their full potential. The major limitation of existing optical systems is that they are unable to determine the
absolute voltage in the cell. Current commercial approaches report only qualitative relative changes in voltage, &
there is no information on absolute resting potential, diastolic potential, or action potential amplitude. Prior research
attempts to develop absolute voltage reports have been unsuccessful. In addition, currently available voltage-
sensitive dyes (VSDs) offer a very limited experimental duration (typically < 30 min) dyes due to: 1) high washout &
internalization rates, which removes them from the electrically active cell membrane; 2) high photo-toxicity, which
reduces the possible exposure time for measurements; & 3) acute dye toxicity, which limits membrane loading &
illumination, resulting in small signals & low signal to noise ratio.
This proposal overcomes these 2 major obstacles to develop & optimize our novel system which combines our
VSDs & our unique & robust optical & analytical system which determines absolute membrane potential. Our
integrated quantitative Optical Electrophysiology (qOEP) system consists of our patented long lasting VSDs,
optimized experimental protocols, optical detection system, & analytical software. Our VSDs, which operate in the
red/NIR spectral range, have reduced acute chemical & photo-toxicity, increased sensitivity, & slower washout/
internalization rate. This gives them the ability to be used in experiments up to 4 hours. This dramatic improvement
revolutionizes the types of experiment which can be performed. Specifically, slower internalization rate gives the
experimenter time to calibrate the VSD, so that the measured light intensity can be directly correlated with
transmembrane potential. The spectral properties & stability of this new generation of VSDs has been combined
with advances in electronics & circuitry that increase signal sensitivity & allow for qOEP. Dye performance & signal
processing are species & organ/cell type-specific. These systems have high degrees of cellular heterogeneity &
connective tissue relative to cultured cells. To develop a consistent system we will optimize our qOEP system
specifically for work with electrically syncytial preparations of induced pluripotent stem cell derived (IPSCD) cardiac
myocytes. The goal is to optimize a cell system (stem cell derived cardiac myocytes) & the dyes to make an
integrated optical system that makes qOEP available to almost any lab. This transformation will be similar to the
way that the advent of molecular biology kits made complex molecular biological techniques accessible to all. The
long term commercial opportunity is in cardiac safety screening to determine the arrhythmogenic potential of new drug
candidates in stem cell derived cardiac myocytes. Our novel system has the potential to have significant impact in
both the financial & human health aspects of drug development. Successful completion of Phase I will result in a
system consisting of sensors, dyes, illumination sources, & software that can be used for beta testing in Phase II. In
Phase II we will develop software, support, packaging & optimized hardware for a turn-key commercial system.
光学测定是细胞电生理学的强大工具。但是,当前可用的方法还没有
发挥了全部潜力。现有光学系统的主要局限性是他们无法确定
电池中的绝对电压。当前的商业方法仅报告电压的质量相对变化,&
没有关于绝对静止潜力,舒张力或动作电位幅度的信息。先前的研究
尝试开发绝对电压报告的尝试没有成功。此外,目前可用的电压 -
敏感染料(VSD)提供了非常有限的实验持续时间(通常<30分钟)染料,因此:1)高清洗量&
内部化速率,从电活动细胞膜中除去它们; 2)高光毒性,这
减少可能的测量时间; &3)急性染料毒性,限制膜负荷&
照明,导致小信号和低信号与噪声比。
该建议克服了这两个主要障碍,以开发和优化我们的新型系统,使我们
VSD和我们独特且鲁棒的光学和分析系统决定了绝对膜的潜力。我们的
综合定量光学电生理(QOEP)系统由我们专利的持久VSD组成
优化的实验协议,光学检测系统和分析软件。我们的VSD,在
红色/NIR光谱范围降低了急性化学和光毒性,灵敏度提高,并且清洗速度较慢/
内在化率。这使他们能够在最多4小时的实验中使用。这种戏剧性的改进
彻底改变了可以执行的实验类型。具体而言,内在化速率较慢
校准VSD的实验者时间,以使测得的光强度可以直接与
跨膜电位。这一新一代VSD的频谱特性和稳定性已合并
随着电子和电路的进步,提高了信号灵敏度并允许QOEP。染料性能和信号
处理是物种和器官/细胞类型特异性的。这些系统具有高度的细胞异质性和
结缔组织相对于培养细胞。为了开发一个一致的系统,我们将优化我们的QOEP系统
专门用于处理诱导多能干细胞(IPSCD)心脏的诱导的综合制剂
心肌细胞。目的是优化细胞系统(干细胞衍生的心肌细胞)和染料以使
集成的光学系统,使QOEP几乎可以用于任何实验室。这种转变将与
分子生物学试剂盒的出现使所有人都可以使用复杂的分子生物学技术。这
长期商业机会正在进行心脏安全筛查以确定新药的心律失常潜力
干细胞衍生的心肌细胞中的候选物。我们的新型系统有可能对
药物开发的金融和人类健康方面。成功完成第一阶段将导致
由传感器,染料,照明源和软件组成的系统,可用于II阶段的Beta测试。在
第二阶段,我们将为交钥匙商业系统开发软件,支持,包装和优化硬件。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anthony John Costantino其他文献
Anthony John Costantino的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
阿魏酸基天然抗氧化抗炎纳米药物用于急性肾损伤诊疗一体化研究
- 批准号:82302281
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
SGO2/MAD2互作调控肝祖细胞的细胞周期再进入影响急性肝衰竭肝再生的机制研究
- 批准号:82300697
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于hemin-MOFs的急性心肌梗塞标志物负背景光电化学-比色双模分析
- 批准号:22304039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
RNA甲基转移酶NSUN2介导SCD1 mRNA m5C修饰调控急性髓系白血病细胞铁死亡的机制研究
- 批准号:82300173
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于IRF5/MYD88信号通路调控巨噬细胞M1极化探讨针刀刺营治疗急性扁桃体炎的机制研究
- 批准号:82360957
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:地区科学基金项目
相似海外基金
Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
- 批准号:
10515267 - 财政年份:2022
- 资助金额:
$ 25万 - 项目类别:
A novel electroceutical tool for treatment of kidney-based diseases
一种治疗肾脏疾病的新型电疗法工具
- 批准号:
10455432 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
A novel electroceutical tool for treatment of kidney-based diseases
一种治疗肾脏疾病的新型电疗法工具
- 批准号:
10194764 - 财政年份:2021
- 资助金额:
$ 25万 - 项目类别:
Intervertebral Disc Degeneration and Cross-Talk with the Nervous System
椎间盘退变和与神经系统的交互作用
- 批准号:
10672264 - 财政年份:2020
- 资助金额:
$ 25万 - 项目类别: