Connectivity Biomarkers of Clinical Response in Treatment Resistant Schizophrenia
难治性精神分裂症临床反应的连通性生物标志物
基本信息
- 批准号:10084173
- 负责人:
- 金额:$ 69.24万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-01-13 至 2023-12-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAftercareAlgorithmsAntipsychotic AgentsBiological AssayBiological MarkersBrain regionBrief Psychiatric Rating ScaleChronicChronically IllClinicalClozapineCorpus striatum structureDataDopamine D2 ReceptorElectroconvulsive TherapyGenerationsHealth ResourcesHealthcare SystemsHeterogeneityHippocampus (Brain)InterventionMRI ScansMaintenanceMeasuresMediatingModernizationNeurobiologyPatientsPatternPopulationPrediction of Response to TherapyPrognostic MarkerPsychosesPsychotic DisordersPublic HealthQuality of lifeRefractoryResearchResistanceRestScanningSchizophreniaSeedsSensitivity and SpecificityStructureSymptomsTechniquesThalamic structureTimeTreatment EfficacyWorkbasebiomarker developmentclinical practicecohortdrug developmenteconomic impacteffective interventionefficacious treatmentevidence basefirst episode schizophreniaimpressionindexinglongitudinal datasetlongitudinal designneuroimagingneuromechanismnovelpotential biomarkerprecision medicinepredicting responseprognosticpsychotic symptomsresponsetherapy developmenttreatment grouptreatment responsetreatment strategytreatment trial
项目摘要
Project Summary
Antipsychotic drugs are the mainstay for treatment of psychosis, yet they are associated with substantial
heterogeneity in their therapeutic efficacy. Non-response to treatment contributes to poor quality of life for
patients, and a large economic impact on healthcare systems. Treatment algorithms for these illnesses are
devoid of prognostic measures, and clinicians generally must rely on trial-and-error. At the same time, neural
mechanisms underlying response to treatment remain unclear, resulting in a lack of potential targets for novel
treatment development. Surprisingly, given the urgent public health and scientific needs, very little work has
utilized modern neuroimaging techniques to understand the mechanisms of antipsychotic response.
We have recently demonstrated that resting state functional connectivity (RSFC) may be a valuable assay for
biomarker development, both as pre-treatment predictors of treatment response, as well as dynamic markers
of antipsychotic efficacy over the course of treatment. For example, our group developed an index of striatal
connectivity that predicted response to second-generation antipsychotics (SGAs) with high sensitivity and
specificity in first-episode schizophrenia patients, and generalized to a cohort of chronic patients with
psychosis. Moreover, we found that changes in the functional interactions of the striatum with the cingulate,
hippocampus, thalamus, and cortex tracked improvements in psychosis after 12 weeks of SGA treatment.
To date, this approach has not been applied to treatment-resistant schizophrenia (TRS) populations, nor have
treatment strategies that do not primarily target the striatum been extensively studied. In this project, we
propose to assess RSFC in two groups of TRS patients undergoing treatment with effective intervention
strategies that significantly differ from traditional D2 receptor antagonists. In Aim 1, we will assess psychotic
patients undergoing a 24-week treatment trial with clozapine, which remains unique amongst antipsychotic
drugs for its superior efficacy in TRS. In Aim 2, we will assess patients whose psychotic symptoms remain
refractory even to CLZ, whom we refer to as ultra-treatment-resistant (uTRS). We will scan uTRS patients
undergoing an 8-week treatment trial of CLZ combined with adjunctive electro-convulsive therapy (CLZ+ECT),
a treatment strategy recently demonstrated to have remarkable efficacy in severely ill uTRS patients. For both
aims, we will use a longitudinal design with MRI scans collected before and after controlled treatment, with
symptoms assessed with structured rating scales. RSFC will be assessed using a seed-based strategy based
upon our recent work, but expanded to include relevant subcortical structures beyond the striatum.
Results from this project may provide: 1) biomarkers for use in “precision medicine” strategies for patients with
psychotic illnesses; and 2) biomarkers of striatal- and nonstriatally-mediated antipsychotic efficacy for use in
novel antipsychotic drug development. Such biomarkers are urgently needed, given the lack of a sufficient
evidence base to guide clinical practice, and the lack of a research base to guide treatment development.
项目概要
抗精神病药物是治疗精神病的主要药物,但它们与大量的精神疾病相关。
治疗效果的异质性导致治疗无反应导致生活质量差。
患者,以及对医疗保健系统的巨大经济影响。
缺乏预后措施,并且通常必须依赖于神经试验。
治疗反应的潜在机制仍不清楚,导致缺乏新的潜在靶点
令人惊讶的是,鉴于紧迫的公共卫生和科学需求,相关工作却很少。
利用现代神经影像技术来了解抗精神病反应的机制。
我们最近证明,静息态功能连接(RSFC)可能是一种有价值的检测方法
生物标记物的开发,既作为治疗反应的治疗前预测因子,又作为动态标记物
例如,我们小组开发了纹状体指数。
连接性预测对第二代抗精神病药物(SGA)的反应具有高灵敏度和
首发精神分裂症患者的特异性,并推广到一组慢性患者
此外,我们发现纹状体与扣带回的功能相互作用发生变化,
经过 12 周的 SGA 治疗后,海马体、丘脑和皮质的精神病状况得到改善。
迄今为止,这种方法尚未应用于难治性精神分裂症(TRS)人群,也没有应用于
在这个项目中,我们对不主要针对纹状体的治疗策略进行了广泛的研究。
建议评估两组接受有效干预治疗的 TRS 患者的 RSFC
与传统 D2 受体拮抗剂显着不同的策略 在目标 1 中,我们将评估精神病。
接受氯氮平 24 周治疗试验的患者,氯氮平在抗精神病药物中仍然是独一无二的
在目标 2 中,我们将评估精神病症状仍然存在的患者。
甚至对 CLZ 也难以治疗,我们将其称为超级耐药 (uTRS) 我们将对 uTRS 患者进行扫描。
接受为期 8 周的 CLZ 联合辅助电休克治疗(CLZ+ECT)治疗试验,
最近证明,一种治疗策略对严重的 uTRS 患者具有显着疗效。
目标,我们将使用纵向设计,在对照治疗之前和之后收集 MRI 扫描,
使用结构化评级量表评估的症状将使用基于种子的策略进行评估。
基于我们最近的工作,但扩展到包括纹状体以外的相关皮质下结构。
该项目的结果可能提供:1)用于针对患有以下疾病的患者的“精准医疗”策略的生物标志物
精神疾病;和 2) 纹状体和非纹状体介导的抗精神病药功效的生物标志物
鉴于缺乏足够的生物标志物,迫切需要开发新型抗精神病药物。
指导临床实践的证据基础,缺乏指导治疗开发的研究基础。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Electroconvulsive Therapy and Schizophrenia: A Systematic Review.
- DOI:10.1159/000497376
- 发表时间:2019-04-01
- 期刊:
- 影响因子:0
- 作者:Ali, Sana A;Mathur, Nandita;Braga, Raphael J
- 通讯作者:Braga, Raphael J
The effects of lorazepam on cortico-striatal connectivity in schizophrenia.
劳拉西泮对精神分裂症皮质纹状体连接的影响。
- DOI:10.1016/j.schres.2020.07.004
- 发表时间:2020
- 期刊:
- 影响因子:4.5
- 作者:Ali,SanaA;Moyett,Ashley;Argyelan,Miklos;Barber,AnitaD;Homan,Philipp;Rubio,JoseM;Fales,Christina;Gallego,JuanA;Lencz,Todd;Malhotra,AnilK
- 通讯作者:Malhotra,AnilK
Assessing the Candidates.
评估候选人。
- DOI:10.1016/j.biopsych.2019.07.013
- 发表时间:2019
- 期刊:
- 影响因子:10.6
- 作者:Malhotra,AnilK
- 通讯作者:Malhotra,AnilK
ECT-induced cognitive side effects are associated with hippocampal enlargement.
- DOI:10.1038/s41398-021-01641-y
- 发表时间:2021-10-08
- 期刊:
- 影响因子:6.8
- 作者:Argyelan M;Lencz T;Kang S;Ali S;Masi PJ;Moyett E;Joanlanne A;Watson P;Sanghani S;Petrides G;Malhotra AK
- 通讯作者:Malhotra AK
Estimation of Dynamic Bivariate Correlation Using a Weighted Graph Algorithm.
- DOI:10.3390/e22060617
- 发表时间:2020-06-02
- 期刊:
- 影响因子:0
- 作者:John M;Wu Y;Narayan M;John A;Ikuta T;Ferbinteanu J
- 通讯作者:Ferbinteanu J
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Anil K Malhotra其他文献
Anil K Malhotra的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Anil K Malhotra', 18)}}的其他基金
Striatal Connectivity and Clinical Outcome in Psychosis
纹状体连接性和精神病的临床结果
- 批准号:
10369158 - 财政年份:2021
- 资助金额:
$ 69.24万 - 项目类别:
Connectivity Biomarkers of Clinical Response in Treatment Resistant Schizophrenia
难治性精神分裂症临床反应的连通性生物标志物
- 批准号:
9239186 - 财政年份:2017
- 资助金额:
$ 69.24万 - 项目类别:
Connectivity Biomarkers of Clinical Response in Treatment Resistant Schizophrenia
难治性精神分裂症临床反应的连通性生物标志物
- 批准号:
9891084 - 财政年份:2017
- 资助金额:
$ 69.24万 - 项目类别:
Striatal Connectivity and Clinical Outcome in Psychosis
纹状体连接性和精神病的临床结果
- 批准号:
9920775 - 财政年份:2016
- 资助金额:
$ 69.24万 - 项目类别:
Striatal Connectivity and Clinical Outcome in Psychosis
纹状体连接性和精神病的临床结果
- 批准号:
9331735 - 财政年份:2016
- 资助金额:
$ 69.24万 - 项目类别:
2/3-Social Processes Initiative in Neurobiology of the Schizophrenia(s)
2/3-精神分裂症神经生物学社会过程倡议
- 批准号:
9110619 - 财政年份:2014
- 资助金额:
$ 69.24万 - 项目类别:
2/3-Social Processes Initiative in Neurobiology of the Schizophrenia(s)
2/3-精神分裂症神经生物学社会过程倡议
- 批准号:
8890889 - 财政年份:2014
- 资助金额:
$ 69.24万 - 项目类别:
2/3-Social Processes Initiative in Neurobiology of the Schizophrenia(s)
2/3-精神分裂症神经生物学社会过程倡议
- 批准号:
8758171 - 财政年份:2014
- 资助金额:
$ 69.24万 - 项目类别:
2/2-Pramipexole in Bipolar Disorder: Targeting Cognition
2/2-普拉克索治疗双相情感障碍:针对认知
- 批准号:
8759812 - 财政年份:2014
- 资助金额:
$ 69.24万 - 项目类别:
The Ninth Annual Pharmacogenetics in Psychiatry Meeting
第九届精神病学药物遗传学年会
- 批准号:
8055024 - 财政年份:2010
- 资助金额:
$ 69.24万 - 项目类别:
相似海外基金
A computational model for prediction of morphology, patterning, and strength in bone regeneration
用于预测骨再生形态、图案和强度的计算模型
- 批准号:
10727940 - 财政年份:2023
- 资助金额:
$ 69.24万 - 项目类别:
Germline Genetic Modifiers of Radiation Response
辐射反应的种系遗传修饰剂
- 批准号:
10741022 - 财政年份:2023
- 资助金额:
$ 69.24万 - 项目类别:
Computational imaging approaches to personalized gastric cancer treatment
个性化胃癌治疗的计算成像方法
- 批准号:
10585301 - 财政年份:2023
- 资助金额:
$ 69.24万 - 项目类别:
Integrating liquid biopsy-based epigenetic and imaging modalities to evaluate disease response in multiple myeloma
整合基于液体活检的表观遗传学和成像方式来评估多发性骨髓瘤的疾病反应
- 批准号:
10651370 - 财政年份:2023
- 资助金额:
$ 69.24万 - 项目类别:
Computer Vision for Malaria Microscopy: Automated Detection and Classification of Plasmodium for Basic Science and Pre-Clinical Applications
用于疟疾显微镜的计算机视觉:用于基础科学和临床前应用的疟原虫自动检测和分类
- 批准号:
10576701 - 财政年份:2023
- 资助金额:
$ 69.24万 - 项目类别: