Exploiting metabolic reprogramming to target IDH1 mutated cholangiocarcinoma
利用代谢重编程来靶向 IDH1 突变的胆管癌
基本信息
- 批准号:10115672
- 负责人:
- 金额:$ 17.82万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-03-01 至 2022-02-28
- 项目状态:已结题
- 来源:
- 关键词:AffectAutomobile DrivingAwardBiochemicalBiochemistryBiological AssayBiological ModelsBiologyCancer CenterCell Differentiation processCell physiologyCellsChemicalsCholangiocarcinomaCitric Acid CycleClinical OncologyClinical TrialsCollectionComplexCoupledDNADNA DamageDNA Sequence AlterationDNA biosynthesisDNA damage checkpointDataDefectDependenceDiseaseDisease modelDrug ScreeningElectron TransportEnvironmentEnzymesEpigenetic ProcessEquilibriumFoundationsFutureGene MutationGeneral HospitalsGenesGeneticGenetic Predisposition to DiseaseGenetic ScreeningGenetically Engineered MouseGoalsHomeostasisHot SpotHumanHypersensitivityImpairmentIn VitroIncidenceInterventionIntrahepatic CholangiocarcinomaIsocitrate DehydrogenaseIsocitratesIsotope LabelingKnowledgeLaboratoriesLeadLesionLiverMalignant NeoplasmsMassachusettsMediatingMentorsMentorshipMetabolicMetabolismMethodsMitochondriaModelingMolecularMutateMutationNucleotidesOncogenesOncogenicOrphanOutcomeOxidation-ReductionPathway interactionsPatientsPharmacologyPharmacotherapyPhasePhysiologicalProductionPrognosisProteomicsPublic HealthPyrimidinePyrimidine NucleotidesReactionResearchResistanceRespirationRoleSeriesSolid NeoplasmSystemTestingTetanus Helper PeptideTherapeuticTrainingTranslational ResearchUnited States National Institutes of HealthWorkalpha ketoglutaratebasebile ductbiliary tractchemical geneticsclinically relevantcytotoxicgain of functiongene functionhistone demethylaseimprovedin vivoin vivo Modelinhibitor/antagonistinnovationinsightinterestloss of functionmetabolomicsmitochondrial metabolismmouse modelmutantneoplastic cellnovelnucleotide metabolismpatient derived xenograft modelpre-clinicalprogramspyrimidine metabolismrespiratoryresponsetherapy developmenttooltranslational studytumortumor metabolism
项目摘要
Project Summary
Considerable interests in understanding and developing therapeutics for cancer have been to study oncogenic
lesion reprogrammed metabolism that is the hallmark of cancer. Gain-of-function hot-spot mutations in the
isocitrate dehydrogenase genes (IDH) are among the most common genetic alterations in intrahepatic
cholangiocarcinoma (ICC). The IDH mutations lead to production of an oncometabolite 2-hydroxygluatrate that
perturbs epigenetics and other cellular processes. However, it was not clear how oncogenic IDH1 mutations alter
metabolism that could underlie novel vulnerabilities in ICC. To uncover novel insights in IDH1 mutant ICC, we
have established and characterized an IDH1 mutant ICC mouse model (GEMM), as well as patient derived
models for in vivo disease biology. Leveraging these models, we demonstrate that mutant IDH1 reprograms
metabolism including suppression of mitochondrial function and selective hinderance of de novo pyrimidine
synthesis, which underlie novel metabolic vulnerability. Coherently, we identified from large-scale screens
selective and potent chemical and genetic vulnerabilities of IDH1 mutant cells that impinge on nucleotide
metabolism. As such, an important scientific goal, and that of this NIH Pathway to Independence, are to further
understand cellular and physiological basis underpinning the crosstalk between reprogrammed metabolism and
vulnerabilities for future therapy development. I propose an innovative research program combining cutting-edge
metabolomics, proteomics, as well as classic biochemistry, genetics and chemical biology approaches to obtain
mechanistic and translational insights in the novel metabolic vulnerabilities of IDH1 mutant ICC using my human
and GEMM models. I hypothesize that oncogenic IDH1 mutations lead to reprogrammed nucleotide synthesis
that can be leveraged upon to target IDH1 mutant ICC. I will focus on three specific aims: 1) understanding the
cellular mechanisms of mutant IDH1 reprogrammed pyrimidine synthesis and its genetic vulnerability; 2)
elucidating how pharmacologic modulation of nucleotide synthesis disrupts DNA replication and accumulates
DNA damage underlying the hypersensitivity of IDH1 mutant cells; and 3) identifying in vivo determinants of IDH1
mutant ICC sensitivity to drug treatments. Dr. Nabeel Bardeesy's laboratory and Massachusetts General Hospital
Cancer Center provide an ideal training environment for the proposed research. I will avail the outstanding
mentorships with a spectrum of expertise in metabolism, DNA damage, chemical biology, proteomic analysis,
and clinical oncology. Thus, I will acquire necessary trainings in DNA damage response pathways, quantitative
proteomics and pre-clinical compound characterizations for mechanistic and translational research during the
mentored K99 phase. The Pathway to Independence Award will enable me to expand my scientific and technical
repertoire and develop a hypothesis-driven research program, with which I will build an integrative and
translational research platform to perform cancer metabolism research independently in my own laboratory.
项目摘要
了解癌症的理解和发展治疗剂的兴趣是研究致癌
病变重编程的代谢是癌症的标志。功能收获的热点突变
异氯酸酯脱氢酶基因(IDH)是肝内最常见的遗传改变之一
胆管癌(ICC)。 IDH突变导致产生oncometabolite 2-羟基氟酸酯的生产
Perturbs表观遗传学和其他细胞过程。但是,尚不清楚致癌IDH1突变如何改变
可能是ICC中新型脆弱性的代谢。为了发现IDH1突变体ICC中的新见解,我们
已经建立并表征了IDH1突变体ICC小鼠模型(GEMM)以及衍生的患者
体内疾病生物学模型。利用这些模型,我们证明了突变体IDH1重新编程
代谢,包括抑制线粒体功能和从头嘧啶的选择性障碍
合成,这是新型代谢脆弱性的基础。连贯地,我们从大规模屏幕上识别
IDH1突变细胞的选择性和有效的化学和遗传脆弱性,这些突变细胞影响核苷酸
代谢。因此,一个重要的科学目标以及这一NIH独立途径的目标是进一步
了解细胞和生理基础的基础,以重编代谢和
未来治疗发展的脆弱性。我提出了一个创新的研究计划,结合了尖端
代谢组学,蛋白质组学以及经典的生物化学,遗传学和化学生物学方法
IDH1突变体ICC的新代谢脆弱性中的机械和转化见解使用我的人
和Gemm型号。我假设致癌IDH1突变导致重编程的核苷酸合成
可以利用该靶向IDH1突变体ICC。我将重点介绍三个具体目标:1)了解
突变体IDH1的细胞机制重编程了嘧啶合成及其遗传脆弱性; 2)
阐明核苷酸合成的药理学调节如何破坏DNA复制并累积
DNA损害IDH1突变细胞超敏反应的背后损害; 3)识别IDH1的体内决定因素
突变ICC对药物治疗的敏感性。 Nabeel Bardeesy博士的实验室和马萨诸塞州综合医院
癌症中心为拟议的研究提供了理想的培训环境。我会利用出色的
具有新陈代谢,DNA损伤,化学生物学,蛋白质组学分析方面的专业知识的指导,
和临床肿瘤学。因此,我将获得DNA损伤响应途径的必要培训,定量
蛋白质组学和临床前复合特征,用于机械和转化研究期间
指导K99阶段。获得独立奖的途径将使我能够扩展我的科学和技术
曲目并制定了一个假设驱动的研究计划,我将通过该计划建立一个综合性和
转化研究平台,在我自己的实验室独立进行癌症代谢研究。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lei Shi其他文献
Lei Shi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lei Shi', 18)}}的其他基金
Design and directed evolution of an 'Edmanase' enzyme for high-throughput peptide sequencing.
用于高通量肽测序的“Edmanase”酶的设计和定向进化。
- 批准号:
10259868 - 财政年份:2018
- 资助金额:
$ 17.82万 - 项目类别:
The Neurotransmitter: Sodium Symporter Permeation Pathway
神经递质:钠转运蛋白渗透途径
- 批准号:
8288299 - 财政年份:2010
- 资助金额:
$ 17.82万 - 项目类别:
The Neurotransmitter: Sodium Symporter Permeation Pathway
神经递质:钠转运蛋白渗透途径
- 批准号:
8069423 - 财政年份:2010
- 资助金额:
$ 17.82万 - 项目类别:
The Neurotransmitter: Sodium Symporter Permeation Pathway
神经递质:钠转运蛋白渗透途径
- 批准号:
8100281 - 财政年份:2010
- 资助金额:
$ 17.82万 - 项目类别:
The Neurotransmitter: Sodium Symporter Permeation Pathway
神经递质:钠转运蛋白渗透途径
- 批准号:
7640664 - 财政年份:2008
- 资助金额:
$ 17.82万 - 项目类别:
The Neurotransmitter: Sodium Symporter Permeation Pathway
神经递质:钠转运蛋白渗透途径
- 批准号:
7471635 - 财政年份:2008
- 资助金额:
$ 17.82万 - 项目类别:
Structural basis for the functions of dopamine receptors, neurotransmitter transporters, and sigma 1 receptor
多巴胺受体、神经递质转运蛋白和 sigma 1 受体功能的结构基础
- 批准号:
10699660 - 财政年份:
- 资助金额:
$ 17.82万 - 项目类别:
Structural basis for the functions of dopamine receptors, dopamine transporter, and sigma 1 receptor
多巴胺受体、多巴胺转运蛋白和 sigma 1 受体功能的结构基础
- 批准号:
9549754 - 财政年份:
- 资助金额:
$ 17.82万 - 项目类别:
Structural basis for the functions of dopamine receptors, neurotransmitter transporters, and sigma 1 receptor
多巴胺受体、神经递质转运蛋白和 sigma 1 受体功能的结构基础
- 批准号:
10267556 - 财政年份:
- 资助金额:
$ 17.82万 - 项目类别:
Evaluation of the sigma-1 receptor as a potential therapeutic target for COVID-19
评估 sigma-1 受体作为 COVID-19 潜在治疗靶点
- 批准号:
10267567 - 财政年份:
- 资助金额:
$ 17.82万 - 项目类别:
相似国自然基金
基于驾驶人行为理解的人机共驾型智能汽车驾驶权分配机制研究
- 批准号:52302494
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
有条件自动驾驶汽车驾驶人疲劳演化机理与协同调控方法
- 批准号:52372341
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
人机共驾汽车驾驶风险分析及控制权智能交互机理
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
人机共驾汽车驾驶风险分析及控制权智能交互机理
- 批准号:52272413
- 批准年份:2022
- 资助金额:54.00 万元
- 项目类别:面上项目
定性与定量分析跟驰行驶中汽车驾驶员情感-行为交互作用机理
- 批准号:71901134
- 批准年份:2019
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Investigating the role of public transit on health behaviors among older adults with disabilities
调查公共交通对残疾老年人健康行为的作用
- 批准号:
10644067 - 财政年份:2023
- 资助金额:
$ 17.82万 - 项目类别:
Dissociating respiratory depression and analgesia via a data-driven model of interacting respiratory and pain networks
通过呼吸和疼痛网络相互作用的数据驱动模型分离呼吸抑制和镇痛
- 批准号:
10644300 - 财政年份:2023
- 资助金额:
$ 17.82万 - 项目类别:
Spatialomics and quantitative MRI of ischemic injury in a piglet model of Legg-Calve-Perthes disease
Legg-Calve-Perthes 病仔猪模型缺血性损伤的空间组学和定量 MRI
- 批准号:
10806492 - 财政年份:2023
- 资助金额:
$ 17.82万 - 项目类别:
Does social motivation in adolescence differentially predict the impact of childhood threat exposure on developing suicidal thoughts and behaviors
青春期的社会动机是否可以差异预测童年威胁暴露对自杀想法和行为的影响
- 批准号:
10785373 - 财政年份:2023
- 资助金额:
$ 17.82万 - 项目类别:
Deciphering the lipid composition of primary cilia in human metabolic disease
破译人类代谢疾病中初级纤毛的脂质成分
- 批准号:
10696465 - 财政年份:2023
- 资助金额:
$ 17.82万 - 项目类别: