Accelerating viral outbreak detection in US cities using mechanistic models, machine learning and diverse geospatial data
使用机械模型、机器学习和多样化地理空间数据加速美国城市的病毒爆发检测
基本信息
- 批准号:10113533
- 负责人:
- 金额:$ 59.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-02-24 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:AbsenteeismAddressAfricanAgeAlgorithm DesignAlgorithmsAreaArticulationBayesian MethodBehavioralCaringChronicChronic DiseaseCitiesClimateClinicalClinical DataCollaborationsCommunicable DiseasesDataData SourcesDecision MakingDetectionDiseaseDisease OutbreaksDisease SurveillanceDisease modelEbolaElectronic Health RecordEnsureEpidemicEvaluationGeographyGoalsHealthHealthcareHomeHumanIndividualInfectionInfluenzaInfluenza A Virus, H1N1 SubtypeInterdisciplinary StudyInternationalInternetInterventionLocationLung diseasesMachine LearningMedicalMethodologyMethodsMexicoModelingNeighborhoodsPollutionPopulationPreventionPublic HealthPythonsReadinessReportingResearchResolutionRiskRuralSchoolsSentinelSeriesSignal TransductionSocial EnvironmentSpecific qualifier valueSpeedSubgroupSurveillance ModelingSymptomsSystemTechniquesTestingTimeTranslatingUncertaintyValidationViralVirusVirus DiseasesVisualizationWorkWorld Health Organizationaustinbasecofactorcomorbiditydashboarddata acquisitiondata handlingdata integrationdesigndetection methoddetection platformdigitaldisease transmissiondiverse dataepidemiologic dataepidemiological modelexperimental studyflexibilityglobal healthhealth care availabilityhealth goalshigh riskhigh risk populationinfluenza outbreakinfluenzavirusinnovationinsightmetropolitannext generationnoveloutcome predictionpandemic diseasepublic health interventionrespiratory virusschool districtsignal processingsimulationsocial mediasociodemographic groupsocioeconomicssoundspatiotemporalstemtooltransmission processtrendunderserved communityuser-friendlyviral transmission
项目摘要
Project Abstract/Summary
Our interdisciplinary research team will develop algorithms to accelerate the detection of respiratory virus
outbreaks at an unprecedented local scale in US cities. We propose to advance outbreak detection by
combining machine learning data integration methods and spatial models of disease transmission. The
dynamic models that will be developed will provide mechanistic engines for distinguishing typical from
atypical disease trends and the optimization methods evaluate the informativeness of data sources to
achieve specified public health goals through the rapid evaluation of diverse input data sources. Working
with local healthcare and public health leaders, we will translate the algorithms into user-friendly online tools
to support preparedness plans and decision-making.
Our proposed research is organized around three major aims. In Aim 1, we will apply machine learning and
signal processing methods to build systems that track the earliest indicators of emerging outbreaks within
seven US cities. We will evaluate non-clinical data reflecting early and mild symptoms as well as clinical data
covering underserved communities and geographic and demographic hotspots for viral emergence. In Aim
2, we will develop sub-city scale models reflecting the syndemics of co-circulating respiratory viruses and
chronic respiratory diseases (CRD) that can exacerbate viral infections. We will infer viral transmission rates
and socio-environmental risk cofactors by fitting the model to respiratory disease data extracted from
millions of electronic health records (EHRs) for the last nine years. We will then partner with clinical and
EHR experts to translate our models into the first outbreak detection system for severe respiratory viruses
that incorporates EHR data on CRDs. Using machine learning techniques, we will further integrate other
surveillance, environmental, behavioral and internet predictor data sources to maximize the accuracy,
sensitivity, speed and population coverage of our algorithms. In Aim 3, we will develop an open-access
Python toolkit to facilitate the integration of next generation data into outbreak surveillance models.
This project will produce practical early warning algorithms for detecting emerging viral threats at high
spatiotemporal resolution in several US cities, elucidate socio-geographic gaps in current surveillance
systems and hotspots for viral emergence, and provide a robust design framework for extrapolating these
algorithms to other US cities.
项目摘要/摘要
我们的跨学科研究团队将开发算法以加速呼吸道病毒的检测
美国城市前所未有的地方规模爆发。我们建议通过
结合机器学习数据整合方法和疾病传播的空间模型。这
将开发的动态模型将提供机械引擎,以区分典型
非典型疾病趋势和优化方法评估了数据源的信息性
通过快速评估各种输入数据源来实现指定的公共卫生目标。在职的
与当地的医疗保健和公共卫生领导者一起,我们将这些算法转化为用户友好的在线工具
支持准备计划和决策。
我们提出的研究是围绕三个主要目标组织的。在AIM 1中,我们将应用机器学习和
信号处理方法构建系统,以跟踪最早的爆发指标
美国七个城市。我们将评估反映早期和轻度症状以及临床数据的非临床数据
涵盖了服务不足的社区以及病毒出现的地理和人口热点。目标
2,我们将开发反映共同循环呼吸道病毒和共同体的次城量表模型和
慢性呼吸道疾病(CRD)会加剧病毒感染。我们将推断病毒传播率
通过将模型拟合到从中提取的呼吸道疾病数据中,以及社会环境风险辅助因子
在过去的九年中,数百万的电子健康记录(EHR)。然后,我们将与临床合作
EHR专家将我们的模型转化为严重呼吸病毒的第一个爆发检测系统
其中包含了有关CRD的EHR数据。使用机器学习技术,我们将进一步整合其他
监视,环境,行为和互联网预测数据源以最大化准确性,
我们算法的敏感性,速度和人口覆盖范围。在AIM 3中,我们将开发一个开放式访问
Python工具包促进将下一代数据集成到爆发监视模型中。
该项目将产生实用的预警算法,以检测高度的病毒威胁
美国几个城市的时空分辨率,阐明当前监视的社会地理差距
用于病毒出现的系统和热点,并为推断这些框架提供了强大的设计框架
美国其他城市的算法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ALISON P GALVANI其他文献
ALISON P GALVANI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ALISON P GALVANI', 18)}}的其他基金
Accelerating viral outbreak detection in US cities using mechanistic models, machine learning and diverse geospatial data
使用机械模型、机器学习和多样化地理空间数据加速美国城市的病毒爆发检测
- 批准号:
10399134 - 财政年份:2020
- 资助金额:
$ 59.6万 - 项目类别:
Accelerating viral outbreak detection in US cities using mechanistic models, machine learning and diverse geospatial data
使用机械模型、机器学习和多样化地理空间数据加速美国城市的病毒爆发检测
- 批准号:
10571939 - 财政年份:2020
- 资助金额:
$ 59.6万 - 项目类别:
Accelerating viral outbreak detection in US cities using mechanistic models, machine learning and diverse geospatial data
使用机械模型、机器学习和多样化地理空间数据加速美国城市的病毒爆发检测
- 批准号:
10341179 - 财政年份:2020
- 资助金额:
$ 59.6万 - 项目类别:
Accelerating viral outbreak detection in US cities using mechanistic models, machine learning and diverse geospatial data
使用机械模型、机器学习和多样化地理空间数据加速美国城市的病毒爆发检测
- 批准号:
10265769 - 财政年份:2020
- 资助金额:
$ 59.6万 - 项目类别:
Evaluating the social influences that impact vaccination decisions
评估影响疫苗接种决策的社会影响
- 批准号:
9266796 - 财政年份:2013
- 资助金额:
$ 59.6万 - 项目类别:
Evaluating the social influences that impact vaccination decisions
评估影响疫苗接种决策的社会影响
- 批准号:
8477594 - 财政年份:2013
- 资助金额:
$ 59.6万 - 项目类别:
Evaluating the social influences that impact vaccination decisions
评估影响疫苗接种决策的社会影响
- 批准号:
8698777 - 财政年份:2013
- 资助金额:
$ 59.6万 - 项目类别:
Impacts of Individual and Social Behavior on Influenza Dynamics and Control
个人和社会行为对流感动态和控制的影响
- 批准号:
7851274 - 财政年份:2009
- 资助金额:
$ 59.6万 - 项目类别:
Impacts of Individual and Social Behavior on Influenza Dynamics and Control
个人和社会行为对流感动态和控制的影响
- 批准号:
8069304 - 财政年份:2009
- 资助金额:
$ 59.6万 - 项目类别:
Dynamic data-driven decision models for infectious disease control
用于传染病控制的动态数据驱动决策模型
- 批准号:
8703900 - 财政年份:2009
- 资助金额:
$ 59.6万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Coordinated Oral Health Promotion (CO-OP) Chicago Cohort Study
协调口腔健康促进 (CO-OP) 芝加哥队列研究
- 批准号:
10295258 - 财政年份:2021
- 资助金额:
$ 59.6万 - 项目类别:
Evaluation of the Asthma Management Program to Promote Activity for Students in Schools (Asthma-PASS)
对促进学校学生活动的哮喘管理计划的评估 (Asthma-PASS)
- 批准号:
10472061 - 财政年份:2020
- 资助金额:
$ 59.6万 - 项目类别:
Evaluation of the Asthma Management Program to Promote Activity for Students in Schools (Asthma-PASS)
对促进学校学生活动的哮喘管理计划的评估 (Asthma-PASS)
- 批准号:
9974906 - 财政年份:2020
- 资助金额:
$ 59.6万 - 项目类别:
Contributions of biopsychosocial factors in sickle cell disease pain
生物心理社会因素对镰状细胞病疼痛的影响
- 批准号:
10037965 - 财政年份:2020
- 资助金额:
$ 59.6万 - 项目类别:
Accelerating viral outbreak detection in US cities using mechanistic models, machine learning and diverse geospatial data
使用机械模型、机器学习和多样化地理空间数据加速美国城市的病毒爆发检测
- 批准号:
10571939 - 财政年份:2020
- 资助金额:
$ 59.6万 - 项目类别: