Accelerating viral outbreak detection in US cities using mechanistic models, machine learning and diverse geospatial data
使用机械模型、机器学习和多样化地理空间数据加速美国城市的病毒爆发检测
基本信息
- 批准号:10399134
- 负责人:
- 金额:$ 11.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-07-07 至 2023-01-31
- 项目状态:已结题
- 来源:
- 关键词:AgeAntiviral AgentsAreaCOVID-19COVID-19 morbidityCOVID-19 mortalityCOVID-19 riskCategoriesCenters for Disease Control and Prevention (U.S.)Cessation of lifeCitiesClinical TrialsCollaborationsContact TracingCritical CareDataDecision MakingDetectionDevelopmentDisease OutbreaksDisease ProgressionDoseEarly DiagnosisEconomicsEpidemicEpidemiologyFundingFutureHealth Care CostsHospitalizationHumanIndividualInfectionInfluenzaInterdisciplinary StudyInterventionLeadershipMachine LearningMeasuresMethodsModelingNeighborhoodsPeer ReviewPharmacologic SubstancePolicy MakerPopulation SurveillancePopulations at RiskProphylactic treatmentPublic HealthPublicationsReadinessResearchResearch SupportResolutionResourcesRiskRisk AssessmentSARS-CoV-2 antiviralSARS-CoV-2 transmissionScienceScientistSeveritiesSocial DistanceTestingTexasTimeUnited StatesUpdateVaccinesViralVisualizationaustinbasecostdata-driven modeldesignevidence baseflexibilityhigh riskhigh risk populationimprovedmetropolitanmulti-component interventionpandemic diseasepandemic preparednessparent grantpreventrespiratory virusresponserisk predictionsocialsocioeconomicstooltransmission processuser-friendlyvaccination strategyventilationviral transmission
项目摘要
ABSTRACT
Since early January 2020, our interdisciplinary research team has conducted several studies to elucidate the
emerging threat of COVID-19 and support public health responses throughout the United States, resulting in
peer-reviewed publications, online COVID-19 forecasting tools, and extensive engagement with city, state and
national decision makers. In our collaboration with the CDC to develop a national modeling resource for
pandemic preparedness, we had recently developed a national model for evaluating multi-layered intervention
strategies to contain and mitigate outbreaks in US cities. We adapted the model to COVID-19 by incorporating
the latest estimates for age- and risk-group specific rates of transmission, disease progression, asymptomatic
infections, and severity (including risks of hospitalization, critical care, ventilation and death). The model is
designed to flexibly incorporate combinations of social distancing, contact tracing-isolation, antiviral prophylaxis
and treatment, as well as vaccination strategies.
Our Supplementary Aims propose to build a more granular and data-driven model of COVID-19 to elucidate
the transmission, identify high-risk populations, surveillance targets and effective control of this and future
epidemics within US cities. Aim S1: Focusing initially on the Austin-Round Rock metropolitan area in Texas,
we will apply these models to improve real-time risk assessments and optimize the timing and extent of layered
social distancing measures. Aim S2: We will rapidly evaluate strategies for rolling out antiviral prophylaxis and
therapy based on clinical trial data. Aim S3: We will develop user interfaces for our Austin and national models
to support both scientific research and public health efforts to mitigate COVID-19 and plan for future pandemic
threats. These Aims are synergistic with Specific Aim 2 of our parent grant (R01 AI151176-01), in which we are
developing high-resolution models of viral transmission to improve the early detection and control of
anomalous respiratory viruses, particularly in at risk populations.
抽象的
自2020年1月初以来,我们的跨学科研究团队已经进行了几项研究,以阐明
新兴的COVID-19威胁并支持美国的公共卫生响应,从而
经过同行评审的出版物,在线Covid-19预测工具以及与城市,州和州和州的广泛参与
国家决策者。在我们与CDC合作以开发国家建模资源
大流行准备,我们最近开发了一种用于评估多层干预措施的国家模型
遏制和减轻美国城市暴发的策略。我们通过合并将模型调整为COVID-19
对年龄和风险组的最新估计,疾病进展,无症状的传播率
感染和严重程度(包括住院,重症监护,通风和死亡的风险)。该模型是
旨在灵活地结合社会距离的组合,接触示踪性隔离,抗病毒预防
和治疗以及疫苗接种策略。
我们的补充目的建议建立更精细的和数据驱动的Covid-19,以阐明
传输,确定高风险人群,监视目标以及对此和未来的有效控制
美国城市的流行病。 AIM S1:最初专注于德克萨斯州的奥斯丁摇滚乐大都会地区
我们将应用这些模型来改善实时风险评估并优化分层的时间和程度
社交隔离措施。 AIM S2:我们将迅速评估推出抗病毒预防和
基于临床试验数据的治疗。 AIM S3:我们将为奥斯汀和国家模型开发用户界面
支持科学研究和公共卫生努力减轻Covid-19并计划未来的大流行
威胁。这些目标与我们的父母赠款的特定目标2(R01 AI151176-01)是协同作用的,我们在其中
开发病毒传播的高分辨率模型,以改善对的早期检测和控制
异常呼吸道病毒,特别是在风险中。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ALISON P GALVANI其他文献
ALISON P GALVANI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ALISON P GALVANI', 18)}}的其他基金
Accelerating viral outbreak detection in US cities using mechanistic models, machine learning and diverse geospatial data
使用机械模型、机器学习和多样化地理空间数据加速美国城市的病毒爆发检测
- 批准号:
10571939 - 财政年份:2020
- 资助金额:
$ 11.45万 - 项目类别:
Accelerating viral outbreak detection in US cities using mechanistic models, machine learning and diverse geospatial data
使用机械模型、机器学习和多样化地理空间数据加速美国城市的病毒爆发检测
- 批准号:
10113533 - 财政年份:2020
- 资助金额:
$ 11.45万 - 项目类别:
Accelerating viral outbreak detection in US cities using mechanistic models, machine learning and diverse geospatial data
使用机械模型、机器学习和多样化地理空间数据加速美国城市的病毒爆发检测
- 批准号:
10341179 - 财政年份:2020
- 资助金额:
$ 11.45万 - 项目类别:
Accelerating viral outbreak detection in US cities using mechanistic models, machine learning and diverse geospatial data
使用机械模型、机器学习和多样化地理空间数据加速美国城市的病毒爆发检测
- 批准号:
10265769 - 财政年份:2020
- 资助金额:
$ 11.45万 - 项目类别:
Evaluating the social influences that impact vaccination decisions
评估影响疫苗接种决策的社会影响
- 批准号:
9266796 - 财政年份:2013
- 资助金额:
$ 11.45万 - 项目类别:
Evaluating the social influences that impact vaccination decisions
评估影响疫苗接种决策的社会影响
- 批准号:
8477594 - 财政年份:2013
- 资助金额:
$ 11.45万 - 项目类别:
Evaluating the social influences that impact vaccination decisions
评估影响疫苗接种决策的社会影响
- 批准号:
8698777 - 财政年份:2013
- 资助金额:
$ 11.45万 - 项目类别:
Impacts of Individual and Social Behavior on Influenza Dynamics and Control
个人和社会行为对流感动态和控制的影响
- 批准号:
7851274 - 财政年份:2009
- 资助金额:
$ 11.45万 - 项目类别:
Impacts of Individual and Social Behavior on Influenza Dynamics and Control
个人和社会行为对流感动态和控制的影响
- 批准号:
8069304 - 财政年份:2009
- 资助金额:
$ 11.45万 - 项目类别:
Dynamic data-driven decision models for infectious disease control
用于传染病控制的动态数据驱动决策模型
- 批准号:
8703900 - 财政年份:2009
- 资助金额:
$ 11.45万 - 项目类别:
相似国自然基金
核苷类抗病毒药物嵌合型核酸纳米载体的构筑及其抗病毒性能研究
- 批准号:52303174
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
靶向病毒核衣壳蛋白质相分离的抗病毒药物发现及机制研究
- 批准号:82302491
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
水环境中抗病毒药物及其转化副产物的识别及生态毒性效应研究
- 批准号:52300245
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
猴痘病毒入侵融合复合物、DNA聚合酶复合物的结构解析以及抗病毒药物的开发
- 批准号:82241081
- 批准年份:2022
- 资助金额:65.00 万元
- 项目类别:专项项目
CCHFV的致病机理及抗病毒药物研究
- 批准号:U22A20336
- 批准年份:2022
- 资助金额:255.00 万元
- 项目类别:联合基金项目
相似海外基金
Dissecting the drivers of persistent SARS-CoV-2 infections
剖析 SARS-CoV-2 持续感染的驱动因素
- 批准号:
10736007 - 财政年份:2023
- 资助金额:
$ 11.45万 - 项目类别:
DECON: A sustained topical delivery platform to treat ocular inflammation
DECON:治疗眼部炎症的持续局部给药平台
- 批准号:
10735478 - 财政年份:2023
- 资助金额:
$ 11.45万 - 项目类别:
Developing a renewable and dissectible human liver for the study of HBV/HCV infection
开发可再生、可解剖的人类肝脏用于研究 HBV/HCV 感染
- 批准号:
10686216 - 财政年份:2022
- 资助金额:
$ 11.45万 - 项目类别:
The role of mitochondrial/ER contacts in the regulation of mtDNA release from mitochondria, innate immune signaling, and responses to viral infection
线粒体/内质网接触在调节线粒体 mtDNA 释放、先天免疫信号传导和病毒感染反应中的作用
- 批准号:
10192447 - 财政年份:2021
- 资助金额:
$ 11.45万 - 项目类别:
PM exposure and changes in respiratory host defense responses
PM 暴露和呼吸道宿主防御反应的变化
- 批准号:
10113618 - 财政年份:2020
- 资助金额:
$ 11.45万 - 项目类别: