Development of personalized ex vivo predictive technology for rapidly matching patient tumors with chemotherapy regimens before treatment.
开发个性化离体预测技术,用于在治疗前将患者肿瘤与化疗方案快速匹配。
基本信息
- 批准号:10080473
- 负责人:
- 金额:$ 24.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-10 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:AgeAlabamaArchitectureAreaBiomimeticsBiopsyBiopsy SpecimenCell DeathCell LineCessation of lifeChemotherapy-Oncologic ProcedureClinicalCollaborationsComprehensive Cancer CenterCore BiopsyDataDevelopmentDevicesDiagnosisDiagnosticDiffuseDrug Delivery SystemsExcisionExposure toFutureGoalsHarvestHumanIn VitroInfusion proceduresLegal patentMachine LearningMalignant NeoplasmsMalignant neoplasm of pancreasModelingOperative Surgical ProceduresPainPancreasPancreatic Ductal AdenocarcinomaPatient RightsPatientsPerformance StatusPharmaceutical PreparationsPharmacologyPhasePreparationPrognostic FactorProtocols documentationProviderQuality of lifeRegimenRight to TreatmentsSerum AlbuminSmall Business Innovation Research GrantSpecimenSurface PropertiesSurvival RateSystemic TherapyTechnologyTestingTherapeutic UsesTimeTissuesTumor TissueUniversitiesValidationWorkXenograft procedurebasecancer therapychemotherapyclinical decision-makingclinically translatablecommercializationcostdesigndrug testingeffective therapyefficacy testinghuman tissueimage processingimprovedindividual patientineffective therapiesovertreatmentpersonalized medicinepersonalized predictionspre-clinicalprecision oncologypredictive testpredictive toolsresponsescreeningstandard of caretissue culturetooltreatment responsetreatment strategytumortumor xenograft
项目摘要
Project Summary/Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the deadliest cancers with <9% five-year survival rate and
an estimated 60,000 deaths/year by 2030. PDAC is often diagnosed at an advanced stage thereby precluding
surgical resection for most patients. While new systemic therapy regimens have improved survival, availability
of multiple options, without tools to select an optimal regimen from these (on an individualized basis), has created
a frustrating paradox in clinical decision-making. Due to a lack of personalized predictive tools, current standard
of care treatment strategy is based on prognostic factors such as age, stage, performance status, serum albumin,
etc. There is a critical, urgent and unmet need to develop predictive tools that can identify optimal systemic
therapy regimens and eliminate from consideration ineffective options, on an individualized basis, to improve
quality of life and reduce overtreatment. CerFlux, Inc. is developing such predictive technology with its low-cost
and rapid Personalized Oncology Efficacy Test (POET) to match each patient with the right treatment – before
treatment – to transform pancreatic cancer treatment in the near-term and make a difference in the lives of
patients and providers around the world. Our personalized medicine approach is unique and further enhanced
by a commercial-academic collaboration between CerFlux, Inc. and the O’Neil Comprehensive Cancer Center
at the University of Alabama at Birmingham. The proposed project will build on recent work by our team including
a patented (US 10,114,010B1) biomimetic in vitro platform for pharmacological transport and pancreatic
microtissue tumor models. The commercial goal of this proposal is to identify best practices for using POET in
personalized therapy. Our hypothesis is that response to treatment observed in POET will approximate the
response in the corresponding patient. Our objective is to predict both effective and ineffective treatments for
each patient prior to initiating treatment. We propose the following aims to achieve our objective:
Aim 1: Calibrate and optimize POET for evaluating therapeutics using human PDAC cell-line xenografts for
subsequent testing with patient tissue.
Aim 2: Evaluate efficacy of various systemic therapy agents in POET on an individualized basis to establish
protocols and best practices for using POET in personalized therapy.
We envision substantial continuing commercial-academic collaboration between CerFlux, Inc. and the O’Neil
Comprehensive Cancer Center at the University of Alabama at Birmingham including the integration of machine
learning to derive a “POET Score” – a personalized quantitative efficacy score – based on a combination of
factors. Data from POET and the POET Score will help clinical teams rank treatments for individual patients
before the first drug infusion. If successful, this SBIR-driven study has the potential to transform pancreatic
cancer treatment in the near-term and make a positive impact around the world.
项目摘要/摘要
胰腺导管腺癌(PDAC)是最致命的癌症之一,五年生存率<9%
估计到2030年估计每年60,000例。PDAC经常在高级阶段被诊断出来,从而排除
大多数患者的手术切除。虽然新的系统治疗方案的生存率提高了,但可用性
有多种选项,没有工具来从这些选项中选择最佳方案(以个性化的基础)创建
临床决策中令人沮丧的悖论。由于缺乏个性化的预测工具,当前标准
护理治疗策略的基于预后因素,例如年龄,阶段,性能状态,血清白蛋白,
等等。有一个至关重要的,紧急和未满足的需要开发可以识别最佳系统性的预测工具
治疗方案并从个性化的基础上消除了无效的选择,以改善
生活质量并减少过度治疗。 Cerflux,Inc。正在以低成本开发这种预测技术
和快速个性化的肿瘤学测试(诗人)使每个患者与正确的治疗相匹配 - 之前
治疗 - 在短期内改变胰腺癌治疗,并改变
世界各地的患者和提供者。我们的个性化医学方法是独一无二的,进一步增强了
由Cerflux,Inc。和O'Neil综合癌症中心之间的商业学术合作
在伯明翰阿拉巴马大学。拟议的项目将基于我们团队最近的工作,包括
专利(美国10,114,010B1)的仿生型在体外平台用于药物运输和胰腺
微动物肿瘤模型。该提案的商业目标是确定使用诗人的最佳实践
个性化疗法。我们的假设是,在诗人中观察到的对治疗的反应将近似
相应患者的反应。我们的目标是预测有效和无效的治疗方法
在开始治疗之前,每个患者。我们提出以下目的以实现我们的目标:
目标1:使用人PDAC细胞系Xenographographics校准和优化用于评估治疗的诗人
随后对患者组织进行测试。
目标2:在个性化的基础上评估各种系统治疗剂的效率
在个性化治疗中使用诗人的方案和最佳实践。
我们设想Cerflux,Inc。和O'Neil之间的实质性持续的商业学术合作
伯明翰阿拉巴马大学的综合癌症中心,包括机器的整合
学会得出“诗人分数”(一个个性化的定量效率得分)
因素。诗人和诗人分数的数据将有助于临床团队对个别患者的治疗排名
在第一次输注之前。如果成功,这项以SBIR驱动的研究有可能改变胰腺
近期癌症治疗,并对世界产生积极影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Karim I Budhwani其他文献
Karim I Budhwani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Karim I Budhwani', 18)}}的其他基金
Development of personalized ex vivo predictive technology for rapidly matching patient tumors with chemotherapy regimens before treatment.
开发个性化离体预测技术,用于在治疗前将患者肿瘤与化疗方案快速匹配。
- 批准号:
10303439 - 财政年份:2020
- 资助金额:
$ 24.91万 - 项目类别:
相似海外基金
Deconstructing and Modeling the Single Cell Architecture of the Age-Related Macular Degeneration Retina and RPE/Choroid
年龄相关性黄斑变性视网膜和 RPE/脉络膜的单细胞结构的解构和建模
- 批准号:
10450171 - 财政年份:2020
- 资助金额:
$ 24.91万 - 项目类别:
Deconstructing and Modeling the Single Cell Architecture of the Age-Related Macular Degeneration Retina and RPE/Choroid
年龄相关性黄斑变性视网膜和 RPE/脉络膜的单细胞结构的解构和建模
- 批准号:
10674702 - 财政年份:2020
- 资助金额:
$ 24.91万 - 项目类别:
Deconstructing and Modeling the Single Cell Architecture of the Age-Related Macular Degeneration Retina and RPE/Choroid
年龄相关性黄斑变性视网膜和 RPE/脉络膜的单细胞结构的解构和建模
- 批准号:
10242936 - 财政年份:2020
- 资助金额:
$ 24.91万 - 项目类别:
Deconstructing and Modeling the Single Cell Architecture of the Age-Related Macular Degeneration Retina and RPE/Choroid
年龄相关性黄斑变性视网膜和 RPE/脉络膜的单细胞结构的解构和建模
- 批准号:
10058444 - 财政年份:2020
- 资助金额:
$ 24.91万 - 项目类别:
Determinants of the Biomechanical Behavior of the Human Lamina Cribrosa
人类筛板生物力学行为的决定因素
- 批准号:
9765319 - 财政年份:2018
- 资助金额:
$ 24.91万 - 项目类别: