Development of personalized ex vivo predictive technology for rapidly matching patient tumors with chemotherapy regimens before treatment.
开发个性化离体预测技术,用于在治疗前将患者肿瘤与化疗方案快速匹配。
基本信息
- 批准号:10303439
- 负责人:
- 金额:$ 5.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-10 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:AgeBiomimeticsCell LineCessation of lifeChemotherapy-Oncologic ProcedureClinicalCollaborationsComprehensive Cancer CenterDataDevelopmentDiagnosisExcisionGoalsHumanIn VitroInfusion proceduresLegal patentMachine LearningMalignant NeoplasmsMalignant neoplasm of pancreasModelingOhioOperative Surgical ProceduresPancreasPancreatic Ductal AdenocarcinomaPatientsPerformance StatusPharmaceutical PreparationsPharmacologyPrognostic FactorProtocols documentationProviderQuality of lifeRegimenSerum AlbuminSmall Business Innovation Research GrantSurvival RateSystemic TherapyTechnologyTestingTherapeutic UsesTissuesUniversitiesWorkXenograft procedurebasecancer therapyclinical decision-makingcosteffective therapyefficacy evaluationefficacy testingimprovedindividual patientineffective therapiesovertreatmentpancreatic ductal adenocarcinoma cellpersonalized medicinepersonalized predictionsprecision oncologypredictive toolsresponsestandard of caretooltreatment responsetreatment strategytumor
项目摘要
Project Summary/Abstract
Pancreatic ductal adenocarcinoma (PDAC) is among the deadliest cancers with <9% five-year survival rate and
an estimated 60,000 deaths/year by 2030. PDAC is often diagnosed at an advanced stage thereby precluding
surgical resection for most patients. While new systemic therapy regimens have improved survival, availability
of multiple options, without tools to select an optimal regimen from these (on an individualized basis), has created
a frustrating paradox in clinical decision-making. Due to a lack of personalized predictive tools, current standard
of care treatment strategy is based on prognostic factors such as age, stage, performance status, serum albumin,
etc. There is a critical, urgent and unmet need to develop predictive tools that can identify optimal systemic
therapy regimens and eliminate from consideration ineffective options, on an individualized basis, to improve
quality of life and reduce overtreatment. CerFlux, Inc. is developing such predictive technology with its low-cost
and rapid Personalized Oncology Efficacy Test (POET) to match each patient with the right treatment – before
treatment – to transform pancreatic cancer treatment in the near-term and make a difference in the lives of
patients and providers around the world. Our personalized medicine approach is unique and further enhanced
by a commercial-academic collaboration between CerFlux, Inc. and the James Comprehensive Cancer Center
at the Ohio State University. The proposed project will build on recent work by our team including a patented
(US 10,114,010B1) biomimetic in vitro platform for pharmacological transport and pancreatic microtissue tumor
models. The commercial goal of this proposal is to identify best practices for using POET in personalized therapy.
Our hypothesis is that response to treatment observed in POET will approximate the response in the
corresponding patient. Our objective is to predict both effective and ineffective treatments for each patient prior
to initiating treatment. We propose the following aims to achieve our objective:
Aim 1: Calibrate and optimize POET for evaluating therapeutics using human PDAC cell-line xenografts for
subsequent testing with patient tissue.
Aim 2: Evaluate efficacy of various systemic therapy agents in POET on an individualized basis to establish
protocols and best practices for using POET in personalized therapy.
We envision substantial continuing commercial-academic collaboration between CerFlux, Inc. and the James
Comprehensive Cancer Center at the Ohio State University including the integration of machine learning to
derive a “POET Score” – a personalized quantitative efficacy score – based on a combination of factors. Data
from POET and the POET Score will help clinical teams rank treatments for individual patients before the first
drug infusion. If successful, this SBIR-driven study has the potential to transform pancreatic cancer treatment in
the near-term and make a positive impact around the world.
项目摘要/摘要
胰腺导管腺癌(PDAC)是最致命的癌症之一,五年生存率<9%
估计到2030年估计每年60,000例。PDAC经常在高级阶段被诊断出来,从而排除
大多数患者的手术切除。虽然新的系统治疗方案的生存率提高了,但可用性
有多种选项,没有工具来从这些选项中选择最佳方案(以个性化的基础)创建
临床决策中令人沮丧的悖论。由于缺乏个性化的预测工具,当前标准
护理治疗策略的基于预后因素,例如年龄,阶段,性能状态,血清白蛋白,
等等。有一个至关重要的,紧急和未满足的需要开发可以识别最佳系统性的预测工具
治疗方案并从个性化的基础上消除了无效的选择,以改善
生活质量并减少过度治疗。 Cerflux,Inc。正在以低成本开发这种预测技术
和快速个性化的肿瘤学测试(诗人)使每个患者与正确的治疗相匹配 - 之前
治疗 - 在短期内改变胰腺癌治疗,并改变
世界各地的患者和提供者。我们的个性化医学方法是独一无二的,进一步增强了
由Cerflux,Inc。和James综合癌症中心之间的商业学术合作
在俄亥俄州立大学。拟议的项目将基于我们团队最近的工作,包括专利
(US 10,114,010B1)用于药物运输和胰岛微动物肿瘤的仿生体内平台
型号。该提案的商业目标是确定在个性化治疗中使用诗人的最佳实践。
我们的假设是,在诗人中观察到的对治疗的反应将近似
相应的患者。我们的目标是预测每位患者的有效治疗和无效治疗
开始治疗。我们提出以下目的以实现我们的目标:
目标1:使用人PDAC细胞系Xenographographics校准和优化用于评估治疗的诗人
随后对患者组织进行测试。
目标2:在个性化的基础上评估各种系统治疗剂的效率
在个性化治疗中使用诗人的方案和最佳实践。
我们设想Cerflux,Inc。和James之间的实质性持续的商业学术合作
俄亥俄州立大学的综合癌症中心,包括将机器学习的整合到
基于因素的组合,得出“诗人分数”(诗人得分”(个性化的定量效率得分)。数据
从诗人和诗人分数中,临床团队将在第一次之前对个别患者的治疗进行排名
药物输液。如果成功,这项以SBIR驱动的研究有可能改变胰腺癌治疗
近期并对世界产生积极影响。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A hitchhiker's guide to cancer models.
- DOI:10.1016/j.tibtech.2022.04.003
- 发表时间:2022-11
- 期刊:
- 影响因子:17.3
- 作者:Budhwani, Karim I.;Patel, Zeelu H.;Guenter, Rachael E.;Charania, Areesha A.
- 通讯作者:Charania, Areesha A.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Karim I Budhwani其他文献
Karim I Budhwani的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Karim I Budhwani', 18)}}的其他基金
Development of personalized ex vivo predictive technology for rapidly matching patient tumors with chemotherapy regimens before treatment.
开发个性化离体预测技术,用于在治疗前将患者肿瘤与化疗方案快速匹配。
- 批准号:
10080473 - 财政年份:2020
- 资助金额:
$ 5.2万 - 项目类别:
相似国自然基金
靶向小胶质细胞的仿生甘草酸纳米颗粒构建及作用机制研究:脓毒症相关性脑病的治疗新策略
- 批准号:82302422
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
促细胞外囊泡分泌的绒毛膜纳米纤维仿生培养体系的构建及其在宫腔粘连修复中的应用研究
- 批准号:32301204
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
柔性薄板仿生推进性能和尾迹演化自相似特性研究
- 批准号:12372241
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
仿生形状记忆型自驱动接触熔化动态传热行为与强化机理研究
- 批准号:52306077
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
固有免疫程序化激活仿生纳米调节器的构建及其在抗肿瘤治疗中的应用
- 批准号:52373305
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
Mechanisms of Corynebacterium-Dolosigranulum Interactions that Shape Human Nasal Microbiota
棒状杆菌与多洛西颗粒相互作用塑造人类鼻腔微生物群的机制
- 批准号:
10378695 - 财政年份:2021
- 资助金额:
$ 5.2万 - 项目类别:
Mechanisms of Corynebacterium-Dolosigranulum Interactions that Shape Human Nasal Microbiota
棒状杆菌与多洛西颗粒相互作用塑造人类鼻腔微生物群的机制
- 批准号:
10205817 - 财政年份:2021
- 资助金额:
$ 5.2万 - 项目类别:
Mechanisms of Corynebacterium-Dolosigranulum Interactions that Shape Human Nasal Microbiota
棒状杆菌与多洛西颗粒相互作用塑造人类鼻腔微生物群的机制
- 批准号:
10606509 - 财政年份:2021
- 资助金额:
$ 5.2万 - 项目类别:
Development of personalized ex vivo predictive technology for rapidly matching patient tumors with chemotherapy regimens before treatment.
开发个性化离体预测技术,用于在治疗前将患者肿瘤与化疗方案快速匹配。
- 批准号:
10080473 - 财政年份:2020
- 资助金额:
$ 5.2万 - 项目类别: