Advancing Fast-acting Antimalarials that Disrupt Na+ Homeostasis in Parasites
开发破坏寄生虫 Na 稳态的速效抗疟药
基本信息
- 批准号:10055981
- 负责人:
- 金额:$ 73.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-08-12 至 2025-07-31
- 项目状态:未结题
- 来源:
- 关键词:ATP phosphohydrolaseAdvocateAntimalarialsArtemisininsBackBiologyChemicalsClinical TrialsCollaborationsDataDevelopmentDoseDrug KineticsDrug TargetingDrug resistanceEnsureFailureFutureGeneticGoalsHalf-LifeHomeostasisHumanIndiaInfectionInjectableInternationalLaboratoriesLeadMalariaMedicineMetabolicNa(+)-K(+)-Exchanging ATPaseNamesParasite resistanceParasitesPharmaceutical ChemistryPharmacologyPhase II Clinical TrialsPlasmodiumPlasmodium falciparumPlasmodium vivaxPopulationPropertyPyrazolesRecording of previous eventsResearch PersonnelResistanceResistance developmentSafetySeriesServicesSolubilityTestingTimeTreatment FailureWorkbasebenzimidazolechemical synthesisclinical candidateclinical investigationcompliance behaviordrug developmentfirst-in-humangenotoxicityhumanized mouseimprovedin vivoin vivo Modelinhibitor/antagonistlead optimizationmouse modelnovelpathogenpharmacokinetics and pharmacodynamicspre-clinicalsafety studyscaffoldsimulationsmall molecule
项目摘要
Project Summary
For a foreseeable future antimalarial drugs will remain a mainstay for the management of malaria worldwide.
While the pipeline of new antimalarial compounds has begun to look promising in recent years, the specter of
drug resistance is always looming. This fact demands continued efforts to discover and develop new
antimalarial drugs. Among the promising new antimalarial compounds to emerge in recent years are those
that disrupt Na+ homeostasis in Plasmodium falciparum. Two of these compounds (a spiroindolone and a
dihydroisoquinolone) have progressed to Phase II clinical trials and have shown to be highly potent against P.
falciparum and P. vivax infections with in vivo parasite clearance times that are even faster than artemisinin,
the fastest acting antimalarial drug in use. Remarkably, at least 20 distinct chemical classes of compounds,
comprising ~8% of all antimalarials present in the Malaria and Pathogen Boxes distributed by Medicines for
Malaria Venture (MMV), also have the propensity to disrupt Na+ homeostasis in P. falciparum. Several lines of
evidence support the notion that all these compounds inhibit a parasite-encoded Na+-pumping P-type ATPase
named PfATP4. Thus, PfATP4 presents a highly attractive target for a very broad range of small molecules.
Extraordinarily fast clearance of parasites in vivo by PfATP4-active compounds holds the promise for these
compounds to emerge as potential replacement for artemisinin, something the world needs to be prepared for
given the potential spread of artemisinin treatment failures. While two PfATP4-active compounds have
advanced to clinical trials, the history of drug development advises prudence to explore back-up compounds to
account for pipeline attrition and mitigating chances of failure against a valuable target. It is with this
background that we are proposing here to conduct a medicinal chemistry campaign that would deliver
additional preclinical candidates that meet the stringent criteria advocated by MMV. Over the past decade we
have carried out extensive medicinal chemistry campaign to identify highly potent PfATP4-active compounds
that belong to different chemical classes than the two compounds under clinical investigations. We aim to
identify a pre-clinical candidate compound guided by potency, metabolic stability, physicochemical and
pharmacokinetic properties, in vivo efficacy in a humanized mouse model of P. falciparum infection and safety
studies. These studies will be allied with PK/PD simulations to ensure a compound that meets safety and
single dose criteria. We also propose to investigate the possibility of minimizing resistance emergence by
exploring the effects of targeting two different domains of PfATP4 by combination of distinct chemical scaffolds.
项目摘要
对于可预见的未来,抗疟药将仍然是全球疟疾管理的主要主导。
尽管近年来,新的抗疟疾化合物的管道已经开始看起来很有前途,但幽灵
耐药性总是迫在眉睫。这个事实要求继续努力发现和发展新的
抗疟药。近年来,有希望的新抗疟疾化合物是
这种破坏了恶性疟原虫中的Na+稳态。这些化合物中的两个(一种螺旋罗酮和一个
二氢异喹啉酮已发展为II期临床试验,并已证明对P。
恶性疟原虫感染和体内寄生虫清除时间甚至比artemisinin更快
使用最快的作用抗疟药。值得注意的是,至少有20种不同的化合物类化合物,
占疟疾和病原体中所有抗疟疾物的约8%,由药物分配给
疟疾风险(MMV)也有破坏恶性疟原虫中Na+稳态的倾向。几行
证据支持所有这些化合物都抑制寄生虫编码的Na+泵型ATPase的观念
名为PFATP4。因此,PFATP4为非常广泛的小分子提供了一个极具吸引力的靶标。
PFATP4活性化合物对寄生虫的寄生虫非常快速清除持有的承诺
出现的化合物可以作为阿美氨辛替代的潜在替代品,这是世界需要做好准备的
鉴于青蒿素治疗失败的潜在传播。而两种PFATP4活性化合物具有
进行了临床试验,药物开发的历史建议审慎探索备用化合物
解释管道损耗和减轻对价值目标失败的机会。就是这样
我们在这里提议进行药物化学运动的背景活动将提供
符合MMV提倡的严格标准的其他临床前候选人。在过去的十年中
已经开展了广泛的药物化学运动,以识别高强大的PFATP4活性化合物
在临床研究下,该化学类别属于两种化合物。我们的目标
确定以效力,代谢稳定性,理化和物理化学和
药代动力学特性,在恶性疟原虫感染和安全性的人源化小鼠模型中体内功效
研究。这些研究将与PK/PD模拟相结合,以确保符合安全性和
单剂量标准。我们还建议调查最大程度地减少抗药性出现的可能性
通过组合不同的化学支架的组合探索靶向PFATP4的两个不同域的影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sandhya Kortagere其他文献
Sandhya Kortagere的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sandhya Kortagere', 18)}}的其他基金
Advancing Fast-acting Antimalarials that Disrupt Na+ Homeostasis in Parasites
开发破坏寄生虫 Na 稳态的速效抗疟药
- 批准号:
10237376 - 财政年份:2020
- 资助金额:
$ 73.88万 - 项目类别:
Advancing Fast-acting Antimalarials that Disrupt Na+ Homeostasis in Parasites
开发破坏寄生虫 Na 稳态的速效抗疟药
- 批准号:
10455481 - 财政年份:2020
- 资助金额:
$ 73.88万 - 项目类别:
Advancing Fast-acting Antimalarials that Disrupt Na+ Homeostasis in Parasites
开发破坏寄生虫 Na 稳态的速效抗疟药
- 批准号:
10657734 - 财政年份:2020
- 资助金额:
$ 73.88万 - 项目类别:
HIV-1 Tat genetic variation impacts NeuroAIDS
HIV-1 Tat 遗传变异影响 NeuroAIDS
- 批准号:
10553612 - 财政年份:2015
- 资助金额:
$ 73.88万 - 项目类别:
HIV-1 Tat genetic variation impacts NeuroAIDS
HIV-1 Tat 遗传变异影响 NeuroAIDS
- 批准号:
10377319 - 财政年份:2015
- 资助金额:
$ 73.88万 - 项目类别:
STRUCTURE BASED DESIGNS OF CELL PENETRATING PEPTIDES
基于结构的细胞穿透肽设计
- 批准号:
8171867 - 财政年份:2010
- 资助金额:
$ 73.88万 - 项目类别:
STRUCTURE BASED DESIGNS OF CELL PENETRATING PEPTIDES
基于结构的细胞穿透肽设计
- 批准号:
7956251 - 财政年份:2009
- 资助金额:
$ 73.88万 - 项目类别:
STRUCTURE BASED DESIGNS OF CELL PENETRATING PEPTIDES
基于结构的细胞穿透肽设计
- 批准号:
7723392 - 财政年份:2008
- 资助金额:
$ 73.88万 - 项目类别:
相似海外基金
Advancing Fast-acting Antimalarials that Disrupt Na+ Homeostasis in Parasites
开发破坏寄生虫 Na 稳态的速效抗疟药
- 批准号:
10237376 - 财政年份:2020
- 资助金额:
$ 73.88万 - 项目类别:
Advancing Fast-acting Antimalarials that Disrupt Na+ Homeostasis in Parasites
开发破坏寄生虫 Na 稳态的速效抗疟药
- 批准号:
10455481 - 财政年份:2020
- 资助金额:
$ 73.88万 - 项目类别:
Advancing Fast-acting Antimalarials that Disrupt Na+ Homeostasis in Parasites
开发破坏寄生虫 Na 稳态的速效抗疟药
- 批准号:
10657734 - 财政年份:2020
- 资助金额:
$ 73.88万 - 项目类别:
Population biology of malaria drug resistance in Yunnan
云南省疟疾耐药性的人群生物学
- 批准号:
7475649 - 财政年份:2007
- 资助金额:
$ 73.88万 - 项目类别:
Population biology of malaria drug resistance in Yunnan
云南省疟疾耐药性的人群生物学
- 批准号:
7668547 - 财政年份:2007
- 资助金额:
$ 73.88万 - 项目类别: