Synaptic signals that drive the long-term maintenance of homeostatic neuroplasticity
驱动长期维持稳态神经可塑性的突触信号
基本信息
- 批准号:10059270
- 负责人:
- 金额:$ 33.45万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-12-01 至 2021-11-30
- 项目状态:已结题
- 来源:
- 关键词:AcuteAddressAtaxiaBiochemistryBiological AssayBiological ModelsCalciumCalcium ChannelCell Adhesion MoleculesCell Signaling ProcessChronicChronic DiseaseDevelopmentDiseaseDissectionDrosophila genusDrosophila melanogasterElectrophysiology (science)EpilepsyEventFeedbackFibroblast Growth FactorFibroblast Growth Factor ReceptorsGTP-Binding ProteinsGeneticGenetic ModelsGenetic ScreeningGlutamate ReceptorGlutamatesGoalsGrowthHealthHomeostasisHomologous GeneHumanImageImpairmentKnowledgeLeadLifeLigandsLightMaintenanceMediatingMetabotropic Glutamate ReceptorsMigraineModelingMolecularMolecular AnalysisMolecular GeneticsMuscleMyastheniaNCAM1 geneNerveNeural Cell Adhesion MoleculesNeuromuscular JunctionNeuronal PlasticityNeuronsOutcomeOutputPathway interactionsPharmacologyPhospholipasePhysiologicalPhysiologyProcessProtein Tyrosine KinaseProteinsProxyResearchResearch DesignShapesSignal PathwaySignal TransductionSignaling MoleculeSirolimusSynapsesSynaptic plasticitySystemTestingTimeTissuesToxinVesicleWorkbasebiological adaptation to stresseffective therapyfasciclin IIflexibilityimprovedinsightintercellular communicationnervous system disorderneuronal growthneurotransmissionnovelphospholipase C betapostsynapticpresynapticprogramsprotein-tyrosine kinase c-srcquantumresponsestressorsynaptic functiontherapy developmenttool
项目摘要
PROJECT SUMMARY
Background and Objectives: Synapses and circuits possess a robust capacity for stress response.
They employ homeostatic regulatory mechanisms to maintain physiologically appropriate levels of
synaptic output. Improved knowledge about homeostatic forms of synaptic plasticity should lead to a
better understanding of neurological disorders that occur when synapse stability is lost. Using genetic
and electrophysiological approaches at the model Drosophila neuromuscular junction (NMJ) synapse,
three new factors required for the long-term homeostatic maintenance of NMJ function were uncov-
ered: two tyrosine kinase signaling molecules residing in the muscle and one phospholipase C-β
(PLCβ) molecule residing in the neuron. The objective of this proposal is to understand how these
three molecules integrate cell-cell signaling processes to maintain synapse stability throughout life.
Specific Aims and Research Design: This project has three specific aims. The first two aims will
delineate how each respective tyrosine kinase drives a muscle-to-nerve signaling process to stabilize
synaptic activity over long periods of developmental time. The third aim will address how neuronal
PLCβ integrates cell-cell signals at the synapse to autonomously control neuronal output. Each aim
will combine electrophysiology, genetics, pharmacology, biochemistry, and synapse imaging. A prima-
ry assay for each aim will be to challenge NMJ function – usually by inhibiting glutamate receptors in
the muscle – and then to examine the NMJ by electrophysiology to check if it appropriately responds
to that challenge by releasing more glutamate from the neuron. By combining this electrophysiological
approach with synapse imaging it will be possible to identify manipulations that specifically impair
synapse function – as opposed to other parameters, like synapse growth. The expected outcome is a
detailed model of how synaptic tissues transmit cell-cell signals to maintain stable activity levels.
Health Relatedness: Neurological disorders like epilepsy, ataxia, and migraine are associated with
unstable neuronal function. Therefore, understanding how synapses work to maintain stability on a
molecular level could have profound implications for disorders with underlying neuronal instabilities.
Yet the cell-cell signaling events that tightly control levels of synaptic output are poorly understood.
The genetically tractable Drosophila NMJ employs homoestatic strategies to stabilize synapse
function – such as altering levels of presynaptic calcium influx – that are shared by mammalian central
synapses. Taking advantage of the molecular and genetic tools offered by the NMJ promises to shed
light on universally conserved mechanisms of how synapses maintain stable function throughout life.
项目摘要
背景和目标:突触和电路具有强大的压力反应能力。
他们采用稳态调节机制来维持身体适当的水平
突触输出。提高了关于突触可塑性体内稳态形式的知识,应导致
在失去突触稳定性时会更好地理解发生的神经系统疾病。使用遗传
以及模型果蝇神经肌肉连接(NMJ)突触的电生理方法,
长期维持NMJ功能所需的三个新因素是不验证的
ERED:两个位于肌肉中的酪氨酸激酶信号分子和一个磷脂酶C-β
(PLCβ)驻留在神经元中的分子。该提议的目的是了解这些
三个分子整合了细胞 - 细胞信号传导过程,以维持一生的突触稳定性。
具体目的和研究设计:该项目具有三个特定目标。前两个目标将
描述每个相对酪氨酸激酶如何驱动肌肉到神经信号传导过程以稳定
长期发育时间的突触活动。第三个目标将解决神经元如何
PLCβ会在突触时整合细胞电信号,以自主控制神经元输出。每个目标
将结合电生理学,遗传学,药理学,生物化学和突触成像。 Prima-
每个目标的RY分析将是挑战NMJ功能 - 通常通过抑制谷氨酸接收器
肌肉 - 然后通过电生理检查NMJ,以检查是否适当响应
通过从神经元中释放更多的谷氨酸来挑战。通过结合该电生理学
突触成像的方法可以识别出特别损害的操作
突触功能 - 与其他参数相反,例如突触生长。预期的结果是
突触组织如何传输细胞细胞信号以保持稳定活性水平的详细模型。
健康相关性:癫痫,共济失调和偏头痛等神经系统疾病与
不稳定的神经元功能。因此,了解突触如何工作以保持稳定性
分子水平可能对具有潜在神经元不稳定性的疾病具有深远的影响。
然而,严格控制突触输出水平的细胞 - 细胞信号事件知之甚少。
通常可拖延的果蝇NMJ员工稳定突触的均匀策略
功能 - 例如改变突触前钙影响的水平 - 由哺乳动物中央共享
突触。利用NMJ提供的分子和遗传工具有望放弃
关于突触如何在一生中保持稳定功能的普遍配置机制的启示。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Precise mapping of one classic and three novel GluRIIA mutants in Drosophila melanogaster.
- DOI:10.17912/micropub.biology.000784
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Mallik, Bhagaban;Brusich, Douglas J;Heyrman, Georgette;Frank, C Andrew
- 通讯作者:Frank, C Andrew
The calcineurin regulator Sarah enables distinct forms of homeostatic plasticity at the Drosophila neuromuscular junction.
- DOI:10.3389/fnsyn.2022.1033743
- 发表时间:2022
- 期刊:
- 影响因子:3.7
- 作者:Armstrong, Noah S.;Frank, C. Andrew
- 通讯作者:Frank, C. Andrew
Roles for Mitochondrial Complex I Subunits in Regulating Synaptic Transmission and Growth.
- DOI:10.3389/fnins.2022.846425
- 发表时间:2022
- 期刊:
- 影响因子:4.3
- 作者:Mallik, Bhagaban;Frank, C. Andrew
- 通讯作者:Frank, C. Andrew
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CARL ANDREW FRANK其他文献
CARL ANDREW FRANK的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CARL ANDREW FRANK', 18)}}的其他基金
How discrete homeostatic signals stabilize synapse function across time
离散稳态信号如何随时间稳定突触功能
- 批准号:
10706581 - 财政年份:2022
- 资助金额:
$ 33.45万 - 项目类别:
How discrete homeostatic signals stabilize synapse function across time
离散稳态信号如何随时间稳定突触功能
- 批准号:
10568507 - 财政年份:2022
- 资助金额:
$ 33.45万 - 项目类别:
Synaptic signals that drive the long-term maintenance of homeostatic neuroplasticity
驱动长期维持稳态神经可塑性的突触信号
- 批准号:
10088612 - 财政年份:2016
- 资助金额:
$ 33.45万 - 项目类别:
How Ephexin Signaling Promotes Neuronal Stability
Ephexin 信号如何促进神经元稳定性
- 批准号:
7509540 - 财政年份:2008
- 资助金额:
$ 33.45万 - 项目类别:
How Ephexin Signaling Promotes Neuronal Stability
Ephexin 信号如何促进神经元稳定性
- 批准号:
8231539 - 财政年份:2008
- 资助金额:
$ 33.45万 - 项目类别:
How Ephexin Signaling Promotes Neuronal Stability
Ephexin 信号如何促进神经元稳定性
- 批准号:
8012026 - 财政年份:2008
- 资助金额:
$ 33.45万 - 项目类别:
How Ephexin Signaling Promotes Neuronal Stability
Ephexin 信号如何促进神经元稳定性
- 批准号:
7652330 - 财政年份:2008
- 资助金额:
$ 33.45万 - 项目类别:
How Ephexin Signaling Promotes Neuronal Stability
Ephexin 信号如何促进神经元稳定性
- 批准号:
8032421 - 财政年份:2008
- 资助金额:
$ 33.45万 - 项目类别:
Identifying genes that maintain stable neural activity
识别维持稳定神经活动的基因
- 批准号:
7115022 - 财政年份:2004
- 资助金额:
$ 33.45万 - 项目类别:
Identifying genes that maintain stable neural activity
识别维持稳定神经活动的基因
- 批准号:
6946808 - 财政年份:2004
- 资助金额:
$ 33.45万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Targeting urinary tract dysfunctions after spinal cord injury with epidural stimulation
通过硬膜外刺激治疗脊髓损伤后的尿路功能障碍
- 批准号:
10656916 - 财政年份:2023
- 资助金额:
$ 33.45万 - 项目类别:
Development of a Novel, Targeted Small Molecule Inhibitor of the Nucleoside Salvage Pathway to Treat Acute Disseminated Encephalomyelitis (ADEM)
开发一种新型核苷挽救途径靶向小分子抑制剂来治疗急性播散性脑脊髓炎 (ADEM)
- 批准号:
10755864 - 财政年份:2023
- 资助金额:
$ 33.45万 - 项目类别:
Thalamic Coordinated Reset Deep Brain Stimulation for Upper Extremity Essential Tremor: Proof of Principle Study
丘脑协调复位深部脑刺激治疗上肢特发性震颤:原理研究证明
- 批准号:
10575895 - 财政年份:2023
- 资助金额:
$ 33.45万 - 项目类别:
High frequency sacral root stimulation to improve bladder and bowel emptying following SCI
高频骶根刺激可改善 SCI 后膀胱和肠道排空
- 批准号:
10662457 - 财政年份:2022
- 资助金额:
$ 33.45万 - 项目类别:
How discrete homeostatic signals stabilize synapse function across time
离散稳态信号如何随时间稳定突触功能
- 批准号:
10706581 - 财政年份:2022
- 资助金额:
$ 33.45万 - 项目类别: