How discrete homeostatic signals stabilize synapse function across time
离散稳态信号如何随时间稳定突触功能
基本信息
- 批准号:10706581
- 负责人:
- 金额:$ 38.97万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-09-19 至 2027-06-30
- 项目状态:未结题
- 来源:
- 关键词:AcuteAddressAtaxiaBindingBiochemistryBiological ModelsBone Morphogenetic ProteinsBuffersCalciumChaperone GeneChemosensitizationChronicDataDepressed moodDevelopmentDiseaseDrosophila genusDrosophila melanogasterElectrophysiology (science)EngineeringEpilepsyEventExhibitsFibroblast Growth Factor ReceptorsGene MutationGenesGeneticGenetic DiseasesGenetic ModelsGenetic ScreeningGlutamate ReceptorGoalsHealthHomeostasisHourImageImpairmentKnowledgeLifeLinkMaintenanceMediatingMethodsMigraineModalityModelingMolecularMolecular ChaperonesMonitorMotor NeuronsMuscleNerveNerve DegenerationNeurodegenerative DisordersNeurodevelopmental DisorderNeurologicNeuromuscular JunctionNeuronal PlasticityNeuronsNeurosciencesNeurotransmitter ReceptorOutcomeOutputPathway interactionsPeptide Signal SequencesPharmacologyPhasePhysiologicalProcessPropertyPuncture procedureResearchResearch DesignScienceSemaphorinsSignal InductionSignal PathwaySignal TransductionSignaling MoleculeSirolimusSpermineStressSynapsesSynaptic plasticitySystemTestingTimeWorkeffective therapyfollow-upimprovedinhibitorloss of functionnervous system disorderneurotransmissionpharmacologicpresynapticreceptor functionsynaptic functiontooltransmission process
项目摘要
PROJECT SUMMARY
Background and Objectives: Synapses and circuits possess a robust capacity for keeping their outputs stable.
Using the Drosophila melanogaster neuromuscular junction (NMJ) as a model synapse, many labs have recently
identified dozens of signaling molecules and processes that stabilize synapse function through a non-Hebbian
form of homeostatic neuroplasticity called presynaptic homeostatic potentiation (PHP). These findings offer a
rich reservoir for discovery science, but at this point we have little understanding of how dozens of discrete
homeostatic signaling molecules integrate into coherent system that stabilizes synapse function over time. The
objective of this proposal is to solve that problem combining genetics, pharmacology, imaging, biochemistry, and
electrophysiology. Ultimately, improved knowledge about homeostatic forms of synaptic plasticity could lead to
a better understanding of neurological disorders that occur when synapse stability is lost.
Specific Aims and Research Design: This project has two specific aims. We know that PHP at the Drosophila
NMJ can be acutely induced in minutes and then chronically maintained for days. The first aim is to define a
sequence of events that occurs during the opening minutes of PHP induction. For this aim, we take advantage
of a serendipitous finding from a genetic screen: impaired chaperone function in the muscle slows PHP signaling.
Using this genetic tool we will delineate an order of processes that occurs as the muscle signals to the nerve
and potentiates release. For the second aim, we developed a new pharmacological approach to monitor the
transition periods between induction, acute expression, and long-term maintenance of PHP. We will apply this
new method to characterize about 25 known genetic conditions that impact the sustained maintenance of PHP.
We expect to define distinct PHP signaling modalities. Between our aims, the expected outcome is a model of
how a synapse can sustain homeostatic function by integrating multiple signals across phases of time.
Health Relatedness: Neurological disorders like epilepsy, ataxia, and migraine are associated with unstable
neuronal function. Understanding how synapses work to maintain stability on a molecular level could have pro-
found implications for disorders with underlying neuronal instabilities. Yet the signaling events that tightly control
levels of synaptic output are poorly understood. The tractable Drosophila NMJ employs homoestatic strategies
to stabilize synapse function – such as altering levels of presynaptic calcium influx – that are shared by
mammalian central synapses. Taking advantage of the molecular and genetic tools offered by the NMJ promises
to shed light on universally conserved mechanisms of how synapses maintain stable function throughout life.
项目概要
背景和目标:突触和电路具有保持输出稳定的强大能力。
许多实验室最近使用果蝇神经肌肉接头(NMJ)作为模型突触
鉴定了数十种通过非赫布稳定突触功能的信号分子和过程
这些发现提供了一种称为突触前稳态增强(PHP)的稳态神经可塑性。
发现科学的丰富储库,但目前我们对数十个离散的如何
稳态信号分子整合到连贯系统中,随着时间的推移稳定突触功能。
该提案的目的是结合遗传学、药理学、成像、生物化学和
最终,对突触可塑性稳态形式的了解可能会导致
更好地了解突触稳定性丧失时发生的神经系统疾病。
具体目标和研究设计:我们知道果蝇中的 PHP 有两个具体目标。
NMJ 可以在几分钟内急性诱导,然后长期维持数天。第一个目标是定义一个 NMJ。
为了实现这一目标,我们利用了 PHP 入门课程开始时发生的一系列事件。
基因筛查的一个偶然发现:肌肉中的伴侣功能受损会减慢 PHP 信号传导。
使用这种遗传工具,我们将描绘肌肉向神经发出信号时发生的过程顺序
对于第二个目标,我们开发了一种新的药理学方法来监测。
PHP 的诱导、急性表达和长期维持之间的过渡期。
新方法描述了影响 PHP 持续维持的约 25 种已知遗传条件。
我们期望定义不同的 PHP 信号模式。在我们的目标之间,预期结果是一个模型。
突触如何通过跨时间阶段整合多个信号来维持稳态功能。
健康相关性:癫痫、共济失调和偏头痛等神经系统疾病与不稳定有关
了解突触如何在分子水平上维持稳定性可能有利于
发现了对具有潜在神经不稳定的疾病的影响,但信号事件却严格控制。
对于易驯化的果蝇 NMJ 采用稳态策略,人们对突触输出的水平知之甚少。
稳定突触功能——例如改变突触前钙流入的水平——这是由
利用 NMJ 提供的分子和遗传工具有望。
揭示突触如何在整个生命过程中保持稳定功能的普遍保守机制。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
CARL ANDREW FRANK其他文献
CARL ANDREW FRANK的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('CARL ANDREW FRANK', 18)}}的其他基金
How discrete homeostatic signals stabilize synapse function across time
离散稳态信号如何随时间稳定突触功能
- 批准号:
10568507 - 财政年份:2022
- 资助金额:
$ 38.97万 - 项目类别:
Synaptic signals that drive the long-term maintenance of homeostatic neuroplasticity
驱动长期维持稳态神经可塑性的突触信号
- 批准号:
10059270 - 财政年份:2016
- 资助金额:
$ 38.97万 - 项目类别:
Synaptic signals that drive the long-term maintenance of homeostatic neuroplasticity
驱动长期维持稳态神经可塑性的突触信号
- 批准号:
10088612 - 财政年份:2016
- 资助金额:
$ 38.97万 - 项目类别:
How Ephexin Signaling Promotes Neuronal Stability
Ephexin 信号如何促进神经元稳定性
- 批准号:
7509540 - 财政年份:2008
- 资助金额:
$ 38.97万 - 项目类别:
How Ephexin Signaling Promotes Neuronal Stability
Ephexin 信号如何促进神经元稳定性
- 批准号:
8231539 - 财政年份:2008
- 资助金额:
$ 38.97万 - 项目类别:
How Ephexin Signaling Promotes Neuronal Stability
Ephexin 信号如何促进神经元稳定性
- 批准号:
8012026 - 财政年份:2008
- 资助金额:
$ 38.97万 - 项目类别:
How Ephexin Signaling Promotes Neuronal Stability
Ephexin 信号如何促进神经元稳定性
- 批准号:
7652330 - 财政年份:2008
- 资助金额:
$ 38.97万 - 项目类别:
How Ephexin Signaling Promotes Neuronal Stability
Ephexin 信号如何促进神经元稳定性
- 批准号:
8032421 - 财政年份:2008
- 资助金额:
$ 38.97万 - 项目类别:
Identifying genes that maintain stable neural activity
识别维持稳定神经活动的基因
- 批准号:
7115022 - 财政年份:2004
- 资助金额:
$ 38.97万 - 项目类别:
Identifying genes that maintain stable neural activity
识别维持稳定神经活动的基因
- 批准号:
6946808 - 财政年份:2004
- 资助金额:
$ 38.97万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Targeting urinary tract dysfunctions after spinal cord injury with epidural stimulation
通过硬膜外刺激治疗脊髓损伤后的尿路功能障碍
- 批准号:
10656916 - 财政年份:2023
- 资助金额:
$ 38.97万 - 项目类别:
Development of a Novel, Targeted Small Molecule Inhibitor of the Nucleoside Salvage Pathway to Treat Acute Disseminated Encephalomyelitis (ADEM)
开发一种新型核苷挽救途径靶向小分子抑制剂来治疗急性播散性脑脊髓炎 (ADEM)
- 批准号:
10755864 - 财政年份:2023
- 资助金额:
$ 38.97万 - 项目类别:
Thalamic Coordinated Reset Deep Brain Stimulation for Upper Extremity Essential Tremor: Proof of Principle Study
丘脑协调复位深部脑刺激治疗上肢特发性震颤:原理研究证明
- 批准号:
10575895 - 财政年份:2023
- 资助金额:
$ 38.97万 - 项目类别:
High frequency sacral root stimulation to improve bladder and bowel emptying following SCI
高频骶根刺激可改善 SCI 后膀胱和肠道排空
- 批准号:
10662457 - 财政年份:2022
- 资助金额:
$ 38.97万 - 项目类别:
Prevalence of Thiamine Deficiency in Hospitalized Non-Alcoholic Veterans
住院非酗酒退伍军人硫胺素缺乏症的患病率
- 批准号:
10655567 - 财政年份:2022
- 资助金额:
$ 38.97万 - 项目类别: