Improving hiPSC cardiomyocyte engraftment and integration with nanowired human cardiac organoids
改善 hiPSC 心肌细胞的植入以及与纳米线人类心脏类器官的整合
基本信息
- 批准号:10058763
- 负责人:
- 金额:$ 3.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-03-01 至 2021-02-28
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAdipose tissueAdultAdvanced DevelopmentAnastomosis - actionAnimalsAnoikisAttentionBlood VesselsCardiacCardiac MyocytesCardiovascular DiseasesCause of DeathCell CommunicationCell SurvivalCell TherapyCellsCicatrixDataDependenceDevelopmentDiffusionEchocardiographyEffectivenessElectrocardiogramEndothelial CellsEngraftmentEnsureFibroblastsFoundationsGoalsHeartHeart InjuriesHistologicHumanInfiltrationInjectableIschemiaModelingMyocardial InfarctionMyocardiumNutrientOrganoidsProtocols documentationRattusRecovery of FunctionReperfusion InjuryReperfusion TherapyResearchSeedsSepharoseSiliconStructureSupporting CellTimeTissuesTransplantationTreatment EfficacyUmbilical veinVentricularadult stem cellcardiac repaircardiac tissue engineeringcell typeexperienceimprovedin uteroin vivoinduced pluripotent stem cellinjuredinjury and repairinnovationnanomaterialsnanowirepost-transplantpublic health relevanceregenerativerepairedrestorationself assemblystem cells
项目摘要
PROJECT SUMMARY: In the U.S. alone, there are more than 735,000 myocardial infarctions (MI) each year,
suggesting a pressing need to develop treatments for repairing injured hearts. Due to the limited regenerative
capacity of adult hearts, human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) have
received significant attention due to their demonstrated capacity for remuscularization and restoration of
contractile function upon transplantation to injured hearts. Despite the progress, the current approach is limited
by low cell retention and poor integration when delivered as dissociated cells or engineered cardiac tissue
patches. To address these challenges, we pioneered the use of electrically conductive silicon nanowires (e-
SiNWs) to facilitate self-assembly of hiPSC-CMs to form nanowired hiPSC cardiac spheroids. Our in vivo studies
showed the nanowired spheroids improve cell retention and engraftment after transplantation, presumably due
to their 3D microtissue configuration and the e-SiNW enhanced electrical integration. To improve cell survival
and engraftment in injured hearts, I recently developed an organoid fabrication protocol where we seed the
supporting cells (e.g., endothelial cells, cardiac fibroblasts, human adipose stem cells) onto nanowired hiPSC
cardiac spheroids. My preliminary data showed sizeable engraftments of nanowired cardiac organoids in
ischemia/reperfusion (I/R) injured rat hearts, with rapid infiltration of host vasculature and improved organization
and development of contractile structures, when compared to non-nanowired cardiac organoids. The goal of
this proposal is to determine the effects of e-SiNWs and prevascularization of the organoids on hiPSC-CM
engraftment and integration (Aim 1) and demonstrate the translational potential of nanowired human cardiac
organoids in repairing infarcted hearts (Aim 2). The central hypotheses of this proposal are 1) the e-SiNWs
can improve the contractile development of the transplanted organoids, and 2) the lumen-like vasculature in the
organoids can allow for rapid anastomosis with host myocardium. The proposal is innovative in that, for the
first time, we will synergize e-SiNWs and pre-vascularized, injectable 3D cardiac microtissues to develop a
scalable platform to effectively engraft hiPSC-CMs and improve their integration with adult myocardium. My
long-term goal is to make significant contributions towards advancing development of cell-based therapies for
repairing cardiac injury. Accordingly, we will pursue the following specific aims: 1) Determine the effects of e-
SiNWs and prevascularization in nanowired organoids on contractile development and vascular integration with
host myocardium in healthy rat hearts, and 2) Determine therapeutic efficacy of nanowired human cardiac
organoids with injured rat hearts. The proposed research would, for the first time, allow us to investigate the
synergistic effect of e-SiNWs and supporting cell-types on hiPSC-CM engraftment and integration in injured
hearts. This research will provide the foundation to use nanowired human cardiac organoid to pursue large
animal studies and accelerate their translational applications.
项目摘要:仅在美国,每年就有超过735,000个心肌梗死(MI)
暗示需要开发修复受伤心脏的治疗方法。由于再生有限
成人心脏,人类诱导的多能干细胞衍生的心肌细胞(HIPSC-CMS)的能力
由于其证明了回弹的能力和恢复的能力,因此受到了极大的关注
收缩的功能在移植到受伤的心脏时。尽管取得了进展,但当前的方法是有限的
通过低细胞保留率和较差的整合作为解离细胞或工程性心脏组织
补丁。为了应对这些挑战,我们率先使用了导电硅纳米线的使用(e-
sinws)促进hipsc-CM的自组装形成纳米hipsc心脏球体。我们的体内研究
显示纳米球体改善了移植后的细胞保留和植入,大概是由于
到他们的3D微动物配置和E-SINW增强的电气集成。改善细胞存活
并在受伤的心脏中植入,我最近制定了一种类器官制造方案,我们在其中播种
支持细胞(例如内皮细胞,心脏成纤维细胞,人脂肪干细胞)到纳米hipsc上
心脏球体。我的初步数据显示,在
缺血/再灌注(I/R)受伤的老鼠心脏,宿主脉管系统迅速渗透和改善的组织
与非纳米心脏器官相比,收缩结构的发展。目标
该建议是确定类器官对HIPSC-CM的E-SINWS和OVARPASTILICE的影响
植入和整合(AIM 1)并证明了纳米人心脏的翻译潜力
修复梗塞心脏的器官(AIM 2)。该提案的中心假设是1)E-SINWS
可以改善移植器官的收缩发育,以及2)腔内的脉管系统
器官可以通过宿主心肌快速吻合。该提议具有创新性,因为
第一次,我们将协同E-SINW和血管前注射的3D心脏微动物,以开发
可扩展的平台可有效植入HIPSC-CMS并改善与成年心肌的整合。我的
长期目标是为促进基于细胞的疗法的开发做出重大贡献
修复心脏损伤。因此,我们将追求以下特定目的:1)确定电子的影响
纳米器官中的罪恶和前骨性,在收缩发育和血管整合与与
健康大鼠心脏中宿主心肌,2)确定纳米心脏的治疗功效
带有受伤的大鼠心脏的器官。拟议的研究将首次允许我们调查
E-SINWS和支持细胞类型对HIPSC-CM植入的协同作用,并在受伤的
心。这项研究将为使用纳米式人体心脏器官的基础提供大规模追求
动物研究并加速其翻译应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Robert Coyle其他文献
Robert Coyle的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Opportunistic Atherosclerotic Cardiovascular Disease Risk Estimation at Abdominal CTs with Robust and Unbiased Deep Learning
通过稳健且公正的深度学习进行腹部 CT 机会性动脉粥样硬化性心血管疾病风险评估
- 批准号:
10636536 - 财政年份:2023
- 资助金额:
$ 3.68万 - 项目类别:
Improving in vitro preantral follicle development using novel bioengineered culture systems and pre-theca-like cells as a strategy for assisted reproduction
使用新型生物工程培养系统和卵泡膜前样细胞作为辅助生殖策略改善体外窦前卵泡发育
- 批准号:
10749434 - 财政年份:2023
- 资助金额:
$ 3.68万 - 项目类别:
Investigating metabolic responses to high sugar diets and the onset of diabetic phenotypes
研究对高糖饮食的代谢反应和糖尿病表型的发生
- 批准号:
10719544 - 财政年份:2023
- 资助金额:
$ 3.68万 - 项目类别:
Extracellular Vesicle Delivery System for Treatment of Abdominal Aortic Aneurysm
细胞外囊泡递送系统治疗腹主动脉瘤
- 批准号:
10751123 - 财政年份:2023
- 资助金额:
$ 3.68万 - 项目类别:
Ubiquitin D as a potential therapeutic target for NASH, HCC and chronic kidney diseases
泛素 D 作为 NASH、HCC 和慢性肾脏疾病的潜在治疗靶点
- 批准号:
10666292 - 财政年份:2023
- 资助金额:
$ 3.68万 - 项目类别: