Intracellular and Intercellular Network Rewiring and Hidden Driver Inference from Single-Cell Data
细胞内和细胞间网络重新布线以及来自单细胞数据的隐藏驱动程序推断
基本信息
- 批准号:10009449
- 负责人:
- 金额:$ 33.99万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-09 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:AlgorithmsBayesian AnalysisBayesian MethodBayesian ModelingBiological AssayBiological MarkersBiological ProcessBiomedical ResearchBreast Cancer ModelCancer RelapseCell CommunicationCellsClinicalClinical TrialsClustered Regularly Interspaced Short Palindromic RepeatsCollaborationsCompanionsComputational BiologyComputational algorithmDataDevelopmentDiagnosisDiseaseDropoutDrug resistanceEngineeringEpigenetic ProcessEpithelial CellsExposure toFoundationsGenesGenomicsGoalsHeterogeneityHomeostasisImmunologicsImmunologyImmunotherapyIn VitroInformation TheoryInvestigationLaboratoriesLightMammary glandMapsMediatingMessenger RNAMetabolicModelingModificationMolecularMusNatureNeoplasm MetastasisNetwork-basedOrganOutcomePaperPathologicPatient CarePatientsPhysiciansPreventionProteinsProteomicsPublicationsResistanceSaint Jude Children&aposs Research HospitalSignal TransductionSignaling ProteinSystems BiologyTechnologyTherapeuticTissuesTranslatingTranslationsTumor Immunityalgorithm developmentbasecancer subtypescancer therapycell typecomputational pipelinescomputer frameworkcomputerized toolsdifferential expressiondrug sensitivityfunctional genomicsgenome-widehuman diseaseimprovedin silicoin vitro Assayin vivoinsightknowledge basemalignant breast neoplasmnoveloutcome forecastpatient stratificationprecision oncologysingle-cell RNA sequencingstem cellstargeted treatmenttherapeutic targettranscriptometreatment strategytumortumor immunologytumorigenesis
项目摘要
PROJECT SUMMARY
Biological processes operate through molecular networks at the cellular level, and through cell–cell networks at
the tissue/organ level. Deciphering the “wiring” and “rewiring” of these networks under healthy and pathological
conditions is a fundamental yet challenging goal of biomedical research. The emergence of single-cell RNA
sequencing (scRNA-seq) has presented an unprecedented opportunity to achieve this goal by enabling genome-
wide quantification of mRNA in thousands of cells simultaneously and overcoming the heterogeneity problem of
bulk omics data. However, deep analysis of scRNA-seq data is challenging because only a small fraction of the
transcriptome of each cell can be captured. No sophisticated computational tools are available to systemically
reverse engineer intracellular gene–gene (especially signaling) networks and intercellular cell–cell interaction
networks from single-cell omics data. Signaling proteins and epigenetic factors are crucial drivers of network
rewiring and are most likely druggable, making them ideal therapeutic targets. Unfortunately, it is often difficult
to unbiasedly identify many of these drivers (hence known as hidden drivers) because they may not be
genetically altered or differentially expressed at the mRNA or protein levels, but rather are altered by
posttranslational or other modifications. We have developed systems biology algorithms to expose hidden drivers
from bulk omics data for antitumor immunity, tumorigenesis, and drug resistance. However, it remains even more
challenging to reveal cell type–specific hidden drivers from scRNA-seq data because of the “dropout” effects.
Using our established state-of-the-art scRNA-seq platform, we profiled >100,000 epithelial cells from mouse
mammary gland. Our ultradeep scRNA-seq profiling identified new subsets of somatic mammary stem cells
(MaSCs) and shed light on the long-standing debate over the identities of multipotent and unipotent MaSCs.
Therefore, building upon our expertise in systems biology, our robust preliminary results, and our established
collaborations with leaders in the fields of breast cancer and immunology, we propose to develop computational
algorithms to reverse engineer intracellular gene-wise and intercellular cell-wise networks (Aim 1), determine
cell type–specific hidden drivers and their network rewiring (Aim 2), from single-cell omics data, and translate
findings toward biomarkers and therapeutics to improve patient care (Aim 3). We will use information theory and
Bayesian modeling in the development of these algorithms. We will use MaSCs and our breast cancer models
as a proof of concept. With the increasing affordability of single-cell omics technologies, our algorithms can have
a significant impact on many fields of biomedical investigation. For example, delineation of network rewiring and
of critical drivers in stem cells and their niches will provide vital insights into cancer metastasis and relapse, and
lay the foundation for understanding and overcoming the resistance of tumors to immunotherapies. Network-
inferred hidden drivers are potential nonmutant therapeutic targets, and network-based biomarkers have
tremendous potential to better stratify patients for precision cancer medicine.
项目摘要
生物过程通过细胞水平的分子网络运行,尽管细胞网络在
组织/器官水平。
条件是生物医学研究的底座而挑战的目标。
测序(SCRNA-SEQ)提出了一个未经预先的机会,可以通过实现基因组来实现这一目标
同时对数千个细胞中的mRNA进行广泛定量,并克服异性问题
但是,批量数据。
可以捕获每个单元的转录组。
反向英语细胞内基因 - 基因(尤其是信号传导)网络和细胞间细胞 - 细胞 - 细胞相互作用
来自单细胞OMICS数据的网络。
重新布线,很可能是可吸毒的,不幸的是,它通常是difficalt
公正地识别许多驱动程序(被称为隐藏驱动程序),因为是的
在mRNA或蛋白质水平上遗传改变或差异表达,而是通过
翻译或其他修改。我们已经开发了系统生物学算法
从抗肿瘤免疫,肿瘤发生和耐药性的批量数据中,它仍然更加
由于“辍学”效果,从SCRNA-SEQ数据中启用特定于细胞细胞类型的隐藏驱动器的挑战。
使用我们已建立的最先进的SCRNA-SEQ平台,我们从小鼠中介绍了> 100,000个上皮细胞
乳腺。
(MASC)并阐明了关于多能和单身MASC的身份的长期辩论。
因此,基于我们在系统生物学方面的专业知识,我们的强大预定结果以及我们既定的
与乳腺癌和免疫学领域的领导者合作,我们建议开发计算
反向工程算法的细胞内基因和细胞间细胞网络(AIM 1),确定
单元格驱动程序及其网络重新布线(AIM 2),来自单细胞OMICS数据,并翻译
对生物标志物和治疗剂的发现,以改善患者护理(AIM 3)。
贝叶斯建模在算法的开发中。
作为概念证明,我们的算法越来越
对许多生物医学投资领域的重大影响。
干细胞和壁ni的关键驱动因素将为癌症转移和复发和复发提供重要的见解。
奠定理解和克服肿瘤对免疫疗法的阻力的基础。
推断的隐藏驱动因素是潜在的非Mutant治疗靶标,基于网络的生物标志物具有
更好地将患者分层的巨大潜力用于精确的癌症医学。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jiyang Yu其他文献
Jiyang Yu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jiyang Yu', 18)}}的其他基金
Intracellular and Intercellular Network Rewiring and Hidden Driver Inference from Single-Cell Data
细胞内和细胞间网络重新布线以及来自单细胞数据的隐藏驱动程序推断
- 批准号:
10260637 - 财政年份:2019
- 资助金额:
$ 33.99万 - 项目类别:
Intracellular and Intercellular Network Rewiring and Hidden Driver Inference from Single-Cell Data
细胞内和细胞间网络重新布线以及来自单细胞数据的隐藏驱动程序推断
- 批准号:
10680568 - 财政年份:2019
- 资助金额:
$ 33.99万 - 项目类别:
相似国自然基金
基于统计假设检验和贝叶斯方法的网络社区结构分析和标签预测
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于贝叶斯推断的充气梁承载极限实时分析方法研究
- 批准号:
- 批准年份:2022
- 资助金额:55 万元
- 项目类别:面上项目
基于EMAP先验的动态借力贝叶斯模型在确证性平台试验中的适应性设计与分析方法研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
基于贝叶斯非参数遗传预测的复杂疾病两阶段全转录组关联分析建模策略与统计方法研究
- 批准号:
- 批准年份:2021
- 资助金额:55 万元
- 项目类别:面上项目
一种结合并行动态同位素标记实验和贝叶斯推理的基因组规模动力学模型构建和分析方法
- 批准号:
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
相似海外基金
Use Bayesian methods to facilitate the data integration for complex clinical trials
使用贝叶斯方法促进复杂临床试验的数据集成
- 批准号:
10714225 - 财政年份:2023
- 资助金额:
$ 33.99万 - 项目类别:
A mega-analysis framework for delineating autism neurosubtypes
描述自闭症神经亚型的大型分析框架
- 批准号:
10681965 - 财政年份:2023
- 资助金额:
$ 33.99万 - 项目类别:
Bayesian Modeling and Inference for High-Dimensional Disease Mapping and Boundary Detection"
用于高维疾病绘图和边界检测的贝叶斯建模和推理”
- 批准号:
10568797 - 财政年份:2023
- 资助金额:
$ 33.99万 - 项目类别:
New statistical and computational tools for optimization of planarian behavioral chemical screens
用于优化涡虫行为化学筛选的新统计和计算工具
- 批准号:
10658688 - 财政年份:2023
- 资助金额:
$ 33.99万 - 项目类别:
Bayesian modeling of multivariate mixed longitudinal responses with scale mixtures of multivariate normal distributions
具有多元正态分布尺度混合的多元混合纵向响应的贝叶斯建模
- 批准号:
10730714 - 财政年份:2023
- 资助金额:
$ 33.99万 - 项目类别: