Instant Antimicrobial Susceptibility Test

即时抗菌药物敏感性测试

基本信息

  • 批准号:
    10010469
  • 负责人:
  • 金额:
    $ 25.21万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-05-12 至 2023-04-30
  • 项目状态:
    已结题

项目摘要

In the U.S., each year 2 million people are seriously infected by bacteria resistant to antibiotics designed to treat their infections. The cost of antibiotic resistance was estimated to exceed $35 B. Nosocomial bloodstream infections (BSIs) including catheter-related BSIs, are important causes of patient morbidity and mortality. The annual incidence of BSIs is >750,000 cases with a 30% mortality rate, and the proportion of antibiotic-resistant bacteria causing BSIs is increasing. Increasing rates of multidrug-resistant bacteria require use of broad-spectrum antibiotics to avoid inadequate antibiotic coverage, but these drugs are often expensive, and their use promotes bacterial resistance. Rapid initiation of appropriate antibiotic therapy is strongly associated with decreased mortality rates in BSIs. In contrast, inappropriate antibiotic therapy and 3 hr delay in antibiotic administration after septicemia diagnosis have been associated with higher patient mortality. All antimicrobial stewardship programs (ASPs) today are to place patients with BSIs and other infection types on targeted appropriate antibiotic therapy based on AST results as quickly as possible. Rapid delivery of definitive antimicrobial susceptibility testing (AST) results is key to allow minimal use of broad-spectrum therapy and effective appropriate antibiotic regimen. At Linima Field Diagnostics, we have developed an instant antimicrobial susceptibility test (iAST) using piezoelectric plate sensors (PEPSs) that offers unparalleled speed (in 20 min) and sensitivities. Live bacteria coated on the PEPS surface can instantly broadens the top of the resonance peak of the PEPS due to the metabolic stresses generated by the bacteria, which is instantly reduced by the application of an antibiotic. A novel PEPS iAST was engineered by monitoring the decrease of the width of the top of the resonance peak of live bacteria-coated PEPS with an increasing antibiotic concentration. The goal is to demonstrate PEPS iAST in 20 min to both susceptible and resistant bacteria regardless they are fast or slowing growing. Preliminary results showed that PEPS iAST accurately determined antibiotic minimum inhibitory concentrations (MICs) for both susceptible and resistant Escherichia coli (EC) or Staphylococcus aureus (SA) but also for slow-growing Klebsiella pneumoniae (KP) and in 20 min. It is expected that PEPS iAST when developed will permit early application of appropriate antibiotic therapy to not only save lives and but also decrease antibiotic resistance.
在美国,每年有200万人受到抗性细菌的感染 旨在治疗其感染的抗生素。估计抗生素耐药性的成本为 超过$ 35 B.医院血液感染(BSI),包括导管相关的BSIS,为 患者发病率和死亡率的重要原因。 BSIS的年发病率> 750,000 死亡率为30%的病例,抗生素耐药细菌的比例导致BSIS 正在增加。增加耐多药细菌的速率需要使用宽光谱 抗生素可以避免抗生素覆盖不足,但这些药物通常很昂贵,并且 它们的使用促进了细菌抗性。快速开始适当的抗生素治疗是 与BSI的死亡率降低密切相关。相反,不适当的抗生素 疗程后抗生素诊断后的治疗和3小时的延迟是 与较高的患者死亡率有关。今天所有抗菌管理计划(ASP) 将BSI和其他感染类型的患者放在靶向适当的抗生素上 基于AST结果的治疗尽快。快速递送确定的抗菌剂 敏感性测试(AST)结果是允许最少使用广谱疗法和 有效的适当抗生素方案。 在Linima Field Diagnostics,我们开发了一种瞬时抗菌易感性 使用压电板传感器(PEPSS)的测试(iAST),可提供无与伦比的速度(在20分钟内) 和敏感性。涂在佩普斯表面上的活细菌可以立即拓宽 由于细菌产生的代谢应力引起的PEP的共振峰,这是 通过应用抗生素立即降低。一个小说的peps iast是由 监视活细菌涂层的共振峰顶部宽度的减小 抗生素浓度增加的PEP。目标是在20中展示peps iAST 最小对易感性和抗性细菌的生长快或放缓。 初步结果表明,PEPS IAST准确确定了抗生素的最小抑制作用 易感性和抗性大肠杆菌(EC)或 金黄色葡萄球菌(SA),但也用于缓慢生长的克雷伯氏菌(KP)和20 最小。预计开发时Peps iAST将允许尽早应用适当的 抗生素疗法不仅可以挽救生命,还可以降低抗生素耐药性。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Pawan Rao其他文献

Pawan Rao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似海外基金

A Novel Sublingual Vaccine to Prevent Neisseria Gonorrhoeae Infection
预防淋病奈瑟菌感染的新型舌下疫苗
  • 批准号:
    10699065
  • 财政年份:
    2023
  • 资助金额:
    $ 25.21万
  • 项目类别:
Thiazolino-Pyridone Compounds as Novel Drugs for Tuberculosis
噻唑啉-吡啶酮化合物作为结核病新药
  • 批准号:
    10698829
  • 财政年份:
    2023
  • 资助金额:
    $ 25.21万
  • 项目类别:
Disrupting Dogma: Investigating LPS Biosynthesis Inhibition as an Alternative Mechanism of Action of Aminoglycoside Antibiotics
颠覆教条:研究 LPS 生物合成抑制作为氨基糖苷类抗生素的替代作用机制
  • 批准号:
    10653587
  • 财政年份:
    2023
  • 资助金额:
    $ 25.21万
  • 项目类别:
A Randomized Pilot and Feasibility Study of a cultuRE-Directed approach to Urinary traCT Infection symptoms in older womeN: a mixed methods evaluation - the REDUCTION trial
针对老年女性尿路感染症状的文化导向方法的随机试验和可行性研究:混合方法评估 - REDUCTION 试验
  • 批准号:
    10586250
  • 财政年份:
    2023
  • 资助金额:
    $ 25.21万
  • 项目类别:
Structural and functional characterization of glycosyltransferases in the Campylobacter concisus N-linked glycoconjugate biosynthetic pathway
弯曲杆菌 N 连接糖复合物生物合成途径中糖基转移酶的结构和功能表征
  • 批准号:
    10607139
  • 财政年份:
    2023
  • 资助金额:
    $ 25.21万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了