Development of a chemical reaction sensor array platform for label-free, real-time kinetic analysis of enzyme-substrate reactions to enable high-throughput drug discovery

开发化学反应传感器阵列平台,用于酶-底物反应的无标记实时动力学分析,以实现高通量药物发现

基本信息

  • 批准号:
    10011619
  • 负责人:
  • 金额:
    $ 32.42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-05 至 2022-07-31
  • 项目状态:
    已结题

项目摘要

Project Summary Global expenditures by pharmaceutical companies for research and development continue to increase each year with a current estimate of $1B USD and upwards of 15 years to develop a new drug. Drug discovery efforts are critical to the downstream success of candidate selection and relies heavily on high-throughput screening (HTS) to identify viable leads. Current methods for HTS drug discovery assays, such as fluorescence-, or luminescence-based methods, suffer from inherent technical drawbacks and limitations that result in false results leading to failed programs. Additionally, the majority of current HTS methods are not amendable to ultra high- throughput and use end-point assays as opposed to real-time kinetic approaches that can provide a more thorough assessment of molecular interactions. The use of real-time kinetic assays and higher throughput in drug discovery programs could greatly enhance success rates while reducing cost and time. INanoBio is developing a novel fully depleted exponentially coupled (FDEC) field effect transistor (FET) biosensor-based nanosensor multiplexed electronic drug discovery platform (nMEDD) for HTS. Our nMEDD platform will offer (i) real time enzymatic reaction monitoring; (ii) ultra-high sensitivity of detection; (iii) ultra HTS scalability; and (iv) high automation compatibility. The FDEC FET sensors electronically monitor changes in charge or potential by directly reacting with ions in solution, thus allowing for the determination of kinetic reaction rates to inform real-time detection and quantitative measurement of the effects of inhibitors or activators on the enzymatic reaction. As an initial validation of the technology platform, we are focusing on developing nMEDD for use in drug discovery for Alzheimer’s disease (AD). Specifically, we will focus on developing assays to monitor tau phosphorylation and dephosphorylation to enable screening for modulators of tau phosphorylation, as cytosolic aggregates of tau have been linked to AD pathology. The overall goal of this Fast-Track program is to develop INanoBio’s nMEDD platform as a HTS method for monitoring enzymatic reactions for drug discovery purposes. To achieve this goal, the Phase I program will be focused on development of a small-scale multiplex sensor and FDEC FET assays for tau phosphorylation and dephosphorylation to validate the performance of the multiplex sensor. Successful completion of Phase I will result in a sensor chip with spacing that is applicable to a 1536-well plate format and is capable of providing a stable response across the chip for detection of tau phosphorylation and dephosphorylation. The Phase II program will focus on further demonstrating the commercial potential of the FDEC FET technology by completing fabrication of an FDEC FET multiplex sensor and detection system for 1536-well detection of phosphorylation and dephosphorylation of tau, in addition to validation of the assay and demonstration of its potential for higher throughput. Successful completion of the proposed program will provide validation of the nMEDD technology for drug discovery to support partnering efforts and inform expansion of the technology into other disease areas.
项目摘要 制药公司用于研发的全球支出继续增加 一年,目前的估计为$ 1B美元,开发了15年以上的新药。药物发现工作 对于候选人选择的下游至关重要,并且在很大程度上依赖于高通量筛查 (HTS)确定可行的潜在客户。当前的HTS药物发现分析方法,例如荧光 - 或 基于发光的方法,遭受继承的技术缺点和局限性,导致错误的结果 导致程序失败。此外,大多数当前的HTS方法不可对超高 吞吐量和使用终点分析,而不是实时动力学方法,可以提供更多 彻底评估分子相互作用。实时动力学评估的使用和更高的吞吐量 药物发现计划可以大大提高成功率,同时减少成本和时间。 Inanobio正在开发一种新型的完全耗尽的指数耦合(FDEC)场效应晶体管(FET) 基于生物传感器的纳米传感器多路复用电子药物发现平台(NMEDD)用于HTS。我们的nmedd 平台将提供(i)实时酶促反应监测; (ii)检测的超高敏感性; (iii)Ultra HTS 可伸缩性; (iv)高自动化兼容性。 FDEC FET传感器以电子方式监视 通过直接与溶液中的离子反应,电荷或电势,从而确定动力学反应 为实时检测和定量测量抑制剂或激活剂对实时检测和定量测量的比率 酶促反应。作为对技术平台的初步验证,我们专注于开发NMEDD 在药物发现中用于阿尔茨海默氏病(AD)。具体来说,我们将专注于开发测定以监视 tau磷酸化和去磷酸化,以筛选tau磷酸化的调节剂,AS Tau的胞质聚集体已与AD病理学联系在一起。 这个快速轨道程序的总体目标是开发Inanobio的NMedD平台作为HTS方法 监测用于药物发现目的的酶促反应。为了实现这一目标,第一阶段计划将是 专注于开发小尺度的多重传感器和FDEC FET分析,以进行tau磷酸化和 去磷酸化以验证多路复用传感器的性能。成功完成第一阶段将 导致带有间距的传感器芯片适用于1536孔板格式,并且能够提供 在整个芯片上稳定反应,以检测tau磷酸化和去磷酸化。 II期 计划将着重于通过完成FDEC FET技术进一步展示商业潜力 制造FDEC FIT多路复用传感器和检测系统,用于1536孔检测磷酸化 除了验证测定和证明其更高的潜力外,tau的去磷酸化 吞吐量。拟议程序的成功完成将为NMEDD技术提供验证 药物发现以支持合作工作并告知将技术扩展到其他疾病领域。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bharath Takulapalli其他文献

Bharath Takulapalli的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bharath Takulapalli', 18)}}的其他基金

Novel Sensor Integrated Proteome on Chip (SPOC) platform for evaluating kinetic parameters of protein interactions in high throughput
新型传感器集成芯片上蛋白质组 (SPOC) 平台,用于评估高通量蛋白质相互作用的动力学参数
  • 批准号:
    10547479
  • 财政年份:
    2022
  • 资助金额:
    $ 32.42万
  • 项目类别:
Novel Sensor Integrated Proteome on Chip (SPOC) platform for evaluating kinetic parameters of protein interactions in high throughput
新型传感器集成芯片上蛋白质组 (SPOC) 平台,用于评估高通量蛋白质相互作用的动力学参数
  • 批准号:
    10683348
  • 财政年份:
    2022
  • 资助金额:
    $ 32.42万
  • 项目类别:
Development of a chemical reaction sensor array platform for label-free, real-time kinetic analysis of enzyme-substrate reactions to enable high-throughput drug discovery
开发化学反应传感器阵列平台,用于酶-底物反应的无标记实时动力学分析,以实现高通量药物发现
  • 批准号:
    10450925
  • 财政年份:
    2020
  • 资助金额:
    $ 32.42万
  • 项目类别:
Development of a chemical reaction sensor array platform for label-free, real-time kinetic analysis of enzyme-substrate reactions to enable high-throughput drug discovery
开发化学反应传感器阵列平台,用于酶-底物反应的无标记实时动力学分析,以实现高通量药物发现
  • 批准号:
    10677748
  • 财政年份:
    2020
  • 资助金额:
    $ 32.42万
  • 项目类别:

相似海外基金

Artificial Intelligence Applied to Video and Speech for Objectively Evaluating Social Interaction and Depression in Mild Cognitive Impairment
人工智能应用于视频和语音,客观评估轻度认知障碍患者的社交互动和抑郁情况
  • 批准号:
    10810965
  • 财政年份:
    2023
  • 资助金额:
    $ 32.42万
  • 项目类别:
Connected Language and Speech Along the Spectrum of Alzheimer’s Disease and Related Dementias: Digital Assessment and Monitoring.
阿尔茨海默病和相关痴呆症范围内的互联语言和言语:数字评估和监测。
  • 批准号:
    10662754
  • 财政年份:
    2023
  • 资助金额:
    $ 32.42万
  • 项目类别:
Hearing Biomarkers in Alzheimer's Disease
阿尔茨海默病的听力生物标志物
  • 批准号:
    10740266
  • 财政年份:
    2023
  • 资助金额:
    $ 32.42万
  • 项目类别:
An automated machine learning approach to language changes in Alzheimer’s disease and frontotemporal dementia across Latino and English-speaking populations
一种针对拉丁裔和英语人群中阿尔茨海默病和额颞叶痴呆的语言变化的自动化机器学习方法
  • 批准号:
    10662053
  • 财政年份:
    2023
  • 资助金额:
    $ 32.42万
  • 项目类别:
Behavioral and physiological measurements of hearing in mouse models of Alzheimer's Disease
阿尔茨海默病小鼠模型听力的行为和生理测量
  • 批准号:
    10878437
  • 财政年份:
    2023
  • 资助金额:
    $ 32.42万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了