Development of a chemical reaction sensor array platform for label-free, real-time kinetic analysis of enzyme-substrate reactions to enable high-throughput drug discovery
开发化学反应传感器阵列平台,用于酶-底物反应的无标记实时动力学分析,以实现高通量药物发现
基本信息
- 批准号:10011619
- 负责人:
- 金额:$ 32.42万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-05 至 2022-07-31
- 项目状态:已结题
- 来源:
- 关键词:AcousticsAlzheimer&aposs DiseaseAlzheimer&aposs disease pathologyAreaAutomationBindingBiochemical ReactionBiological AssayBiosensorChargeCoupledCustomDataDetectionDevelopmentDiseaseDrug ScreeningDrug TargetingDrug usageEnd Point AssayEnzyme ActivatorsEnzyme InhibitionEnzyme Inhibitor DrugsEnzymesExpenditureFluorescenceFutureGoalsHomeostasisIn VitroIonsKineticsLabelLibrariesLinkLiquid substanceLiteratureMAPT geneMeasurementMeasuresMediatingMetabolismMethodsMonitorNoisePerformancePharmaceutical PreparationsPharmacologic SubstancePhasePhosphoric Monoester HydrolasesPhosphorylationPlayProtein DephosphorylationPublishingReactionReportingReproducibilityRoleScanningSemiconductorsSignal TransductionSurfaceSystemTechnologyTestingTimeTransistorsValidationVariantassay developmentbasecandidate selectionchemical reactioncostdata acquisitiondrug discoveryenzyme activityenzyme substratehigh throughput screeninghigh-throughput drug screeninginhibitor/antagonistkinase inhibitorluminescencemultiplex detectionnanosensorsnanowirenext generationnovelnovel therapeuticsprogramsprototypereaction rateresearch and developmentresponsescale upscreeningsensorsuccesstau Proteinstau aggregationtau phosphorylationtau-protein kinasetechnology validationtime use
项目摘要
Project Summary
Global expenditures by pharmaceutical companies for research and development continue to increase each
year with a current estimate of $1B USD and upwards of 15 years to develop a new drug. Drug discovery efforts
are critical to the downstream success of candidate selection and relies heavily on high-throughput screening
(HTS) to identify viable leads. Current methods for HTS drug discovery assays, such as fluorescence-, or
luminescence-based methods, suffer from inherent technical drawbacks and limitations that result in false results
leading to failed programs. Additionally, the majority of current HTS methods are not amendable to ultra high-
throughput and use end-point assays as opposed to real-time kinetic approaches that can provide a more
thorough assessment of molecular interactions. The use of real-time kinetic assays and higher throughput in
drug discovery programs could greatly enhance success rates while reducing cost and time.
INanoBio is developing a novel fully depleted exponentially coupled (FDEC) field effect transistor (FET)
biosensor-based nanosensor multiplexed electronic drug discovery platform (nMEDD) for HTS. Our nMEDD
platform will offer (i) real time enzymatic reaction monitoring; (ii) ultra-high sensitivity of detection; (iii) ultra HTS
scalability; and (iv) high automation compatibility. The FDEC FET sensors electronically monitor changes in
charge or potential by directly reacting with ions in solution, thus allowing for the determination of kinetic reaction
rates to inform real-time detection and quantitative measurement of the effects of inhibitors or activators on the
enzymatic reaction. As an initial validation of the technology platform, we are focusing on developing nMEDD for
use in drug discovery for Alzheimer’s disease (AD). Specifically, we will focus on developing assays to monitor
tau phosphorylation and dephosphorylation to enable screening for modulators of tau phosphorylation, as
cytosolic aggregates of tau have been linked to AD pathology.
The overall goal of this Fast-Track program is to develop INanoBio’s nMEDD platform as a HTS method for
monitoring enzymatic reactions for drug discovery purposes. To achieve this goal, the Phase I program will be
focused on development of a small-scale multiplex sensor and FDEC FET assays for tau phosphorylation and
dephosphorylation to validate the performance of the multiplex sensor. Successful completion of Phase I will
result in a sensor chip with spacing that is applicable to a 1536-well plate format and is capable of providing a
stable response across the chip for detection of tau phosphorylation and dephosphorylation. The Phase II
program will focus on further demonstrating the commercial potential of the FDEC FET technology by completing
fabrication of an FDEC FET multiplex sensor and detection system for 1536-well detection of phosphorylation
and dephosphorylation of tau, in addition to validation of the assay and demonstration of its potential for higher
throughput. Successful completion of the proposed program will provide validation of the nMEDD technology for
drug discovery to support partnering efforts and inform expansion of the technology into other disease areas.
项目概要
全球制药公司的研发支出持续增加
目前估计需要 10 亿美元,需要 15 年以上的时间来开发新药。
对于下游候选人选择的成功至关重要,并严重依赖高通量筛选
(HTS) 来识别 HTS 药物发现分析的现有方法,例如荧光或荧光分析。
基于发光的方法存在固有的技术缺陷和限制,导致错误的结果
此外,大多数当前的高温超导方法都无法修改为超高通量。
吞吐量并使用终点检测,而不是实时动力学方法,可以提供更多
使用实时动力学分析和更高的通量进行分子相互作用的全面评估。
药物发现计划可以大大提高成功率,同时降低成本和时间。
INanoBio 正在开发一种新型全耗尽指数耦合 (FDEC) 场效应晶体管 (FET)
用于 HTS 的基于生物传感器的纳米传感器多重电子药物发现平台 (nMEDD)。
平台将提供(i)实时酶反应监测;(ii)超高灵敏度检测;(iii)超高通量检测;
(iv) FDEC FET 传感器以电子方式监控变化。
通过直接与溶液中的离子反应来测量电荷或电势,从而可以测定动力学反应
比率以通知实时检测和定量测量抑制剂或激活剂对
作为该技术平台的初步验证,我们专注于开发 nMEDD。
具体来说,我们将专注于开发监测方法。
tau 磷酸化和去磷酸化,以筛选 tau 磷酸化调节剂,如
tau 细胞质聚集体与 AD 病理有关。
该快速通道计划的总体目标是开发 INanoBio 的 nMEDD 平台作为 HTS 方法,用于
为了实现这一目标,第一阶段计划将用于监测酶反应以进行药物发现。
专注于开发小型多重传感器和 FDEC FET 测定法,用于 tau 磷酸化和
去磷酸化以验证多重传感器的性能将成功完成第一阶段。
导致传感器芯片的间距适用于 1536 孔板格式,并且能够提供
用于检测 tau 磷酸化和去磷酸化的整个芯片的稳定响应。
计划将重点通过完成进一步展示 FDEC FET 技术的商业潜力
用于 1536 孔磷酸化检测的 FDEC FET 多重传感器和检测系统的制造
和 tau 去磷酸化,以及验证和证明其用于更高检测的潜力
拟议计划的成功完成将为 nMEDD 技术提供验证。
药物发现,以支持合作努力并为该技术扩展到其他疾病领域提供信息。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bharath Takulapalli其他文献
Bharath Takulapalli的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bharath Takulapalli', 18)}}的其他基金
Novel Sensor Integrated Proteome on Chip (SPOC) platform for evaluating kinetic parameters of protein interactions in high throughput
新型传感器集成芯片上蛋白质组 (SPOC) 平台,用于评估高通量蛋白质相互作用的动力学参数
- 批准号:
10547479 - 财政年份:2022
- 资助金额:
$ 32.42万 - 项目类别:
Novel Sensor Integrated Proteome on Chip (SPOC) platform for evaluating kinetic parameters of protein interactions in high throughput
新型传感器集成芯片上蛋白质组 (SPOC) 平台,用于评估高通量蛋白质相互作用的动力学参数
- 批准号:
10683348 - 财政年份:2022
- 资助金额:
$ 32.42万 - 项目类别:
Development of a chemical reaction sensor array platform for label-free, real-time kinetic analysis of enzyme-substrate reactions to enable high-throughput drug discovery
开发化学反应传感器阵列平台,用于酶-底物反应的无标记实时动力学分析,以实现高通量药物发现
- 批准号:
10450925 - 财政年份:2020
- 资助金额:
$ 32.42万 - 项目类别:
Development of a chemical reaction sensor array platform for label-free, real-time kinetic analysis of enzyme-substrate reactions to enable high-throughput drug discovery
开发化学反应传感器阵列平台,用于酶-底物反应的无标记实时动力学分析,以实现高通量药物发现
- 批准号:
10677748 - 财政年份:2020
- 资助金额:
$ 32.42万 - 项目类别:
相似国自然基金
基于神经退行性疾病前瞻性队列的新烟碱类杀虫剂暴露对阿尔茨海默病的影响及作用机制研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
基于miRNA介导ceRNA网络调控作用的防治阿尔茨海默病及认知障碍相关疾病药物的发现研究
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
LMTK1调控核内体转运介导阿尔茨海默病神经元Reserve机制研究
- 批准号:81903703
- 批准年份:2019
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
基于自组装多肽纳米探针检测蛋白标志物用于阿尔茨海默病精准诊断的研究
- 批准号:31900984
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
靶向干预CD33/Aβ相互作用改善小胶质细胞功能延缓AD病理进程
- 批准号:81901072
- 批准年份:2019
- 资助金额:20.5 万元
- 项目类别:青年科学基金项目
相似海外基金
Artificial Intelligence Applied to Video and Speech for Objectively Evaluating Social Interaction and Depression in Mild Cognitive Impairment
人工智能应用于视频和语音,客观评估轻度认知障碍患者的社交互动和抑郁情况
- 批准号:
10810965 - 财政年份:2023
- 资助金额:
$ 32.42万 - 项目类别:
Connected Language and Speech Along the Spectrum of Alzheimer’s Disease and Related Dementias: Digital Assessment and Monitoring.
阿尔茨海默病和相关痴呆症范围内的互联语言和言语:数字评估和监测。
- 批准号:
10662754 - 财政年份:2023
- 资助金额:
$ 32.42万 - 项目类别:
An automated machine learning approach to language changes in Alzheimer’s disease and frontotemporal dementia across Latino and English-speaking populations
一种针对拉丁裔和英语人群中阿尔茨海默病和额颞叶痴呆的语言变化的自动化机器学习方法
- 批准号:
10662053 - 财政年份:2023
- 资助金额:
$ 32.42万 - 项目类别:
Behavioral and physiological measurements of hearing in mouse models of Alzheimer's Disease
阿尔茨海默病小鼠模型听力的行为和生理测量
- 批准号:
10878437 - 财政年份:2023
- 资助金额:
$ 32.42万 - 项目类别: