MRI-Controllable Microscale Electronics for Minimally-Invasive Wireless Bio-Sensors and Bio-Actuators
用于微创无线生物传感器和生物执行器的 MRI 可控微型电子器件
基本信息
- 批准号:10043403
- 负责人:
- 金额:$ 57.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-15 至 2022-03-11
- 项目状态:已结题
- 来源:
- 关键词:AddressAnimalsAutoimmune DiseasesBehaviorBiological MarkersBiological MonitoringBiological ProcessBiomimetic DevicesBiomimeticsBiophysical ProcessBiophysicsBloodBrainCardiovascular systemCommunicationCustomDetectionDevelopmentDevicesDiagnosisDiagnosticDiseaseEarly DiagnosisEffectivenessElectromagneticsElectronicsEngineeringFrequenciesGastrointestinal tract structureGoalsHarvestImageImaging DeviceInflammatoryLocationMagnetic Resonance ImagingMalignant NeoplasmsMapsMeasuresMedical DeviceMethodsMonitorMusNuclearOrganPerformancePhysiologic pulsePhysiologicalPhysiologyProcessReporterResolutionRobotSignal TransductionSmall IntestinesStreamSystemTechnologyTherapeuticTherapeutic AgentsTissue imagingTissuesValidationWireless Technologyaccurate diagnosisacoustic imagingbasedesigndisease diagnosisgastrointestinal imaginghigh resolution imagingimaging agentimaging modalityin vivoinstrumentationmagnetic fieldmicrosystemsminimally invasivenervous system disorderphysical propertypillradio frequencysensortemporal measurementtomography
项目摘要
Project Summary
The progress of biomedical devices over the past decades is changing how we think about diagnostics
and therapeutics. Nowadays, small medical devices can diagnose and treat disease from inside the body
targeting neurological and autoimmune disorders, cardiovascular conditions, cancer, and other diseases. For
instance, smart pills are being used to image the gastrointestinal tract, distributed sensors are being developed
to map the function of the brain, and microscale robots are being designed to access organs through the blood
stream. However, a major challenge remains in the way these devices communicate with the outside world.
Existing electromagnetic, acoustic, and imaging-based methods for localizing and communicating with such
devices with spatial selectivity are limited by the physical properties of tissue or the performance of the imaging
modality. Similarly, most of the current methods for monitoring biophysical electromagnetic signals in opaque
tissue suffer from poor spatial resolution or other technology-dependent limitations (e.g., tethered devices, poor
sensitivity, highly invasive).
Here, we propose to address both challenges by developing an alternative approach for the minimally
invasive monitoring and control of biophysical processes with high-precision and high-resolution using
microscale biomimetic devices. Specifically, we will adapt the behavior of nuclear spins in magnetic resonance
imaging (MRI) to engineer MRI-controllable resonant-circuit-based microsystems whose resonance frequency
and tuning depend on the local magnetic field and bio-electromagnetic signal, respectively. The application of
magnetic field gradients and radio-frequency signals (available in MRI) then allows the imaging of localized
biophysical processes. These Wireless Electronic MRI Agents (WEMA) will be developed using integrated circuit
(IC) technology and will be compatible with MRI-instrumentation. We will use a small animal 7 T MRI instrument
(available at USC) as our initial system. As a proof-of-concept, we will target the detection of Chron’s disease
using photoluminescence-enabled WEMA devices, addressing the need for accurate and early diagnosis in
inflammatory small bowel disorders. If successful, this transformative technology will provide a new biomimetic
platform capable of wireless, distributed, minimally-invasive sensing and control of biophysical processes using
MRI, and will enhance the development of a wide range of biomedical applications, from distributed monitoring
of relevant biomarkers to targeted release of therapeutic agents and tissue imaging for disease diagnosis.
We will achieve the proposed overall goals by pursuing the following major aims:
Specific Aim 1: Develop miniature WEMA devices via IC design.
Specific Aim 2: Develop MRI methods to interface with WEMA devices.
Specific Aim 3: Experimental validation of WEMA technology in vivo.
项目摘要
在过去的几十年中,生物医学设备的进步正在改变我们对诊断的看法
和治疗。如今,小型医疗设备可以从体内诊断和治疗疾病
靶向神经和自身免疫性疾病,心血管疾病,癌症和其他疾病。为了
实例,智能药丸被用于图像胃肠道,正在开发分布式传感器
绘制大脑的功能,并设计了微观机器人,以通过血液进入器官
溪流。但是,这些设备与外界通信的方式仍然存在一个主要的挑战。
现有的电子,声学和基于成像的方法,用于与此类定位和通信
具有空间选择性的设备受组织的物理特性或成像性能的限制
方式。同样,大多数当前用于监测不透明的生物物理电子信号的方法
组织的空间分辨率差或其他依赖技术的局限性(例如,束缚设备,差
灵敏度,高度侵入性)。
在这里,我们建议通过开发最小的替代方法来应对这两种挑战
使用高精度和高分辨率的生物物理过程的侵入性监测和控制
显微镜仿生设备。具体而言,我们将适应核自旋在磁共振中的行为
成像(MRI)至工程师基于MRI可控的共振电路微系统的共振频率
调整分别取决于局部磁场和生物电磁信号。应用
磁场梯度和射频信号(在MRI中可用)然后允许对局部成像进行成像
生物物理过程。这些无线电子MRI代理(WEMA)将使用集成电路开发
(IC)技术,并将与MRI启示兼容。我们将使用一个小动物7 T MRI仪器
(可在USC上)作为我们的初始系统。作为概念验证,我们将针对Chron病的检测
使用具有光致发光的WEMA设备,以满足对准确和早期诊断的需求
炎症性小肠疾病。如果成功,这种变革性技术将提供新的仿生剂
能够使用无线,分布式,最小侵入性灵敏度和对生物物理过程的控制的平台
MRI,并将通过分布式监测增强广泛的生物医学应用的开发
针对疾病诊断的治疗剂和组织成像的相关生物标志物。
我们将通过追求以下主要目标来实现拟议的总体目标:
特定目标1:通过IC设计开发微型WEMA设备。
特定目标2:开发MRI方法与WEMA设备接口。
特定目的3:体内WEMA技术的实验验证。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Manuel Monge其他文献
Manuel Monge的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
髋关节撞击综合征过度运动及机械刺激动物模型建立与相关致病机制研究
- 批准号:82372496
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
以秀丽隐杆线虫为例探究动物在不同时间尺度行为的神经基础
- 批准号:32300829
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
采用新型视觉-电刺激配对范式长期、特异性改变成年期动物视觉系统功能可塑性
- 批准号:32371047
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
脊椎动物胚胎发育单细胞磷酸化蛋白质组高通量高灵敏度分析新技术新方法
- 批准号:22374084
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
新疆旱獭等啮齿动物携带病毒的病原学与病原生态学研究
- 批准号:32300424
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Mining host-microbe interactions in the neonatal pancreas to combat diabetes
挖掘新生儿胰腺中宿主-微生物的相互作用来对抗糖尿病
- 批准号:
10664448 - 财政年份:2023
- 资助金额:
$ 57.44万 - 项目类别:
Sleep-Wake Cycles of Individuals with Inflammatory Bowel Disease
炎症性肠病患者的睡眠-觉醒周期
- 批准号:
10604701 - 财政年份:2023
- 资助金额:
$ 57.44万 - 项目类别:
Strategies to attenuate the indirect alloimmune response in encapsulated pancreatic islet transplantation
减弱封装胰岛移植中间接同种免疫反应的策略
- 批准号:
10678425 - 财政年份:2023
- 资助金额:
$ 57.44万 - 项目类别:
Targeting IKK-alpha in lymphatics to drive protective tertiary lymphoid organ formation
靶向淋巴管中的 IKK-α 来驱动保护性三级淋巴器官的形成
- 批准号:
10667005 - 财政年份:2023
- 资助金额:
$ 57.44万 - 项目类别:
The developmental pathway of fetal-derived B cells
胎儿来源的 B 细胞的发育途径
- 批准号:
10735381 - 财政年份:2023
- 资助金额:
$ 57.44万 - 项目类别: